Phenological tracking og agricultural feilds investigated by using dual polarimetry tanDEM-X images

Remote sensing plays a key role in monitoring and assessing environmental changes. Because of its special imaging characteristics such as high-resolution, capabilities to obtain data in all weather conditions and sensitivity to geometrical and dielectric properties of the features, Synthetic Apertur...

Full description

Bibliographic Details
Main Authors: S. Mirzaee, M. Motagh, H. Arefi, A. Nooryazdan
Format: Article
Language:English
Published: Copernicus Publications 2015-04-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/73/2015/isprsarchives-XL-7-W3-73-2015.pdf
Description
Summary:Remote sensing plays a key role in monitoring and assessing environmental changes. Because of its special imaging characteristics such as high-resolution, capabilities to obtain data in all weather conditions and sensitivity to geometrical and dielectric properties of the features, Synthetic Aperture Radar (SAR) technology has become a powerful technique to detect small scale changes related to earth surface.SAR images contain the information of both phase and intensity in different modes like single, dual and full polarimetric states which are important in order to extract information about various targets. In this study we investigate phenological changes in an agricultural region using high-resolution X-band SAR data. The case study is located in Doroud region of Lorestan province, west of Iran. The purpose is to investigate the ability of copolar and interferometric coherence extracted from TanDEM-X dual polarimetry (HH/VV) in bistatic StripMap mode for tracking the phenological changes of crops during growing season. The data include 11 images acquired between 12.06.2012 and 02.11.2012 and 6 images acquired between 30.05.2013 and 04.08.2013 in the CoSSC format. Results show that copolar coherence is almost able to follow phenological changes but interferometric coherence has a near constant behaviour with fluctuations mainly related to baseline variations.
ISSN:1682-1750
2194-9034