Step-by-step assembly and testing of a low-cost bioprinting solution for research and educational purposes

Bioprinting is a rapidly expanding technology with the ability to fabricate in vitro three-dimensional (3D) tissues in a layer-by-layer manner to ultimately produce a living tissue which physiologically resembles native in vivo tissue functionality. Unfortunately, large costs associated with commerc...

Full description

Bibliographic Details
Main Authors: John Robert Honiball, Michael Sean Pepper, Earl Prinsloo
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:MethodsX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2215016120304064
Description
Summary:Bioprinting is a rapidly expanding technology with the ability to fabricate in vitro three-dimensional (3D) tissues in a layer-by-layer manner to ultimately produce a living tissue which physiologically resembles native in vivo tissue functionality. Unfortunately, large costs associated with commercially available bioprinters severely limit access to the technology. We investigated the potential for modifying a low-cost commercially available RepRap Prusa iteration 3 (i3) 3D printer with an open-source syringe-housed microextrusion print-head unit (universal paste extruder by Richard Horne, RichRap), that allowed for controlled deposition of cell-laden bioinks and Freeform Reversible Embedding of Suspended Hydrogels (FRESH) method-based printing.
ISSN:2215-0161