Polarization control of a free-electron laser oscillator using helical undulators of opposite helicities

Polarized photon beams provide a unique experimental tool for the study of various polarization-dependent physical processes. Here, we report the experimental demonstration of full polarization control of an oscillator free-electron laser (FEL) using helical undulators of opposite helicities. Using...

Full description

Bibliographic Details
Main Authors: Jun Yan, Hao Hao, Senlin Huang, Jingyi Li, Vladimir N. Litvinenko, Peifan Liu, Stepan F. Mikhailov, Victor G. Popov, Gary Swift, Nikolay A. Vinokurov, Ying K. Wu
Format: Article
Language:English
Published: American Physical Society 2020-06-01
Series:Physical Review Accelerators and Beams
Online Access:http://doi.org/10.1103/PhysRevAccelBeams.23.060702
Description
Summary:Polarized photon beams provide a unique experimental tool for the study of various polarization-dependent physical processes. Here, we report the experimental demonstration of full polarization control of an oscillator free-electron laser (FEL) using helical undulators of opposite helicities. Using two helical undulator magnets of opposite helicities and a buncher magnet in between, we have generated a linearly polarized FEL beam with any desirable polarization direction. With the development of a high-precision FEL polarimeter, we are able to optimize the highly polarized FEL beams in visible wavelengths and measure the polarization with high accuracy, demonstrating linear polarization P_{lin}>0.99 on the routine basis and with the maximum polarization reaching P_{lin}=0.998. In this paper, we describe the FEL configuration, experimental setup, and related beam diagnostics, including the newly developed high-precision FEL polarimeter. We report our experimental approaches to generate, tune up, and characterize the polarization controllable FEL beams and share a new insight into how high-degree polarization is realized based upon our investigation of the temporal structure of the FEL beam. This FEL polarization control technique has been used successfully to generate a polarization controllable Compton γ-ray beam for nuclear physics experiments.
ISSN:2469-9888