Revealing the Effect of Phase Composition and Transformation on the Mechanical Properties of a Cu–6Ni–6Sn–0.6Si Alloy

In the present study, a Cu–6Ni–6Sn–0.6Si alloy is fabricated through frequency induction melting, then subjected to solution treatment, rolling, and annealing. The phase composition, microstructure evolution, and transition mechanism of the Cu–6Ni–6Sn–0.6Si alloy are researched systematically throug...

Full description

Bibliographic Details
Main Authors: Zhuanqin Liang, Wenxin Fan, Pengfei Wang, Yushuai Wang, Kai Zhang, Junsheng Zhao, Lijun Peng
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/18/5201
Description
Summary:In the present study, a Cu–6Ni–6Sn–0.6Si alloy is fabricated through frequency induction melting, then subjected to solution treatment, rolling, and annealing. The phase composition, microstructure evolution, and transition mechanism of the Cu–6Ni–6Sn–0.6Si alloy are researched systematically through simulation calculation and experimental characterization. The ultimate as-annealed sample simultaneously performs with high strength and good ductility according to the uniaxial tensile test results at room temperature. There are amounts of precipitates generated, which are identified as belonging to the DO22 and L12 phases through the transmission electron microscope (TEM) analysis. The DO22 and L12 phase precipitates have a significant strengthening effect. Meanwhile, the generation of the common discontinuous precipitation of the γ phase, which is harmful to the mechanical properties of the copper–nickel–tin alloy, is inhibited mightily during the annealing process, possibly due to the existence of the Ni5Si2 primary phase. Therefore, the as-annealed sample of the Cu–6Ni–6Sn–0.6Si alloy possesses high tensile strength and elongation, which are 967 MPa and 12%, respectively.
ISSN:1996-1944