Second-Harmonic Generation in Mie-Resonant GaAs Nanowires

We investigate the enhancement of second-harmonic generation in cylindrical GaAs nanowires. Although these nanostructures confine light in two dimensions, power conversion efficiencies on the order of <inline-formula> <math display="inline"> <semantics> <mrow> <m...

Full description

Bibliographic Details
Main Authors: Domenico de Ceglia, Luca Carletti, Maria Antonietta Vincenti, Costantino De Angelis, Michael Scalora
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/16/3381
id doaj-906ec2535e324618aa4c93f049d123c1
record_format Article
spelling doaj-906ec2535e324618aa4c93f049d123c12020-11-25T01:02:13ZengMDPI AGApplied Sciences2076-34172019-08-01916338110.3390/app9163381app9163381Second-Harmonic Generation in Mie-Resonant GaAs NanowiresDomenico de Ceglia0Luca Carletti1Maria Antonietta Vincenti2Costantino De Angelis3Michael Scalora4Department of Information Engineering, University of Padova, 35131 Padova, ItalyDepartment of Information Engineering, University of Padova, 35131 Padova, ItalyDepartment of Information Engineering, University of Brescia, 25123 Brescia, ItalyDepartment of Information Engineering, University of Brescia, 25123 Brescia, ItalyCharles M. Bowden Research Lab, US Army AMRDEC, Huntsville, AL 35898, USAWe investigate the enhancement of second-harmonic generation in cylindrical GaAs nanowires. Although these nanostructures confine light in two dimensions, power conversion efficiencies on the order of <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>&#8722;</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> with a pump peak intensity of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>~</mo> <mn>1</mn> <mo>&nbsp;</mo> <mi>GW</mi> <mo>/</mo> <msup> <mrow> <mi>cm</mi> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> are possible if the pump and the second-harmonic fields are coupled to the Mie-type resonances of the nanowire. We identify a large range of nanowire radii in which a double-resonance condition, i.e., both the pump and the second-harmonic fields excite normal modes of the nanowire, induces a high-quality-factor peak of conversion efficiency. We show that second-harmonic light can be scattered with large efficiency even if the second-harmonic photon energy is larger than 1.42 eV, i.e., the electronic bandgap of GaAs, above which the material is considered opaque. Finally, we evaluate the efficiency of one-photon absorption of second-harmonic light and find that resonant GaAs nanowires absorb second-harmonic light in the near-field region almost at the same rate at which they radiate second-harmonic light in the far-field region.https://www.mdpi.com/2076-3417/9/16/3381nanophotonicsnonlinear opticssecond-harmonic generationMie resonances
collection DOAJ
language English
format Article
sources DOAJ
author Domenico de Ceglia
Luca Carletti
Maria Antonietta Vincenti
Costantino De Angelis
Michael Scalora
spellingShingle Domenico de Ceglia
Luca Carletti
Maria Antonietta Vincenti
Costantino De Angelis
Michael Scalora
Second-Harmonic Generation in Mie-Resonant GaAs Nanowires
Applied Sciences
nanophotonics
nonlinear optics
second-harmonic generation
Mie resonances
author_facet Domenico de Ceglia
Luca Carletti
Maria Antonietta Vincenti
Costantino De Angelis
Michael Scalora
author_sort Domenico de Ceglia
title Second-Harmonic Generation in Mie-Resonant GaAs Nanowires
title_short Second-Harmonic Generation in Mie-Resonant GaAs Nanowires
title_full Second-Harmonic Generation in Mie-Resonant GaAs Nanowires
title_fullStr Second-Harmonic Generation in Mie-Resonant GaAs Nanowires
title_full_unstemmed Second-Harmonic Generation in Mie-Resonant GaAs Nanowires
title_sort second-harmonic generation in mie-resonant gaas nanowires
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2019-08-01
description We investigate the enhancement of second-harmonic generation in cylindrical GaAs nanowires. Although these nanostructures confine light in two dimensions, power conversion efficiencies on the order of <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>&#8722;</mo> <mn>5</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> with a pump peak intensity of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>~</mo> <mn>1</mn> <mo>&nbsp;</mo> <mi>GW</mi> <mo>/</mo> <msup> <mrow> <mi>cm</mi> </mrow> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> are possible if the pump and the second-harmonic fields are coupled to the Mie-type resonances of the nanowire. We identify a large range of nanowire radii in which a double-resonance condition, i.e., both the pump and the second-harmonic fields excite normal modes of the nanowire, induces a high-quality-factor peak of conversion efficiency. We show that second-harmonic light can be scattered with large efficiency even if the second-harmonic photon energy is larger than 1.42 eV, i.e., the electronic bandgap of GaAs, above which the material is considered opaque. Finally, we evaluate the efficiency of one-photon absorption of second-harmonic light and find that resonant GaAs nanowires absorb second-harmonic light in the near-field region almost at the same rate at which they radiate second-harmonic light in the far-field region.
topic nanophotonics
nonlinear optics
second-harmonic generation
Mie resonances
url https://www.mdpi.com/2076-3417/9/16/3381
work_keys_str_mv AT domenicodeceglia secondharmonicgenerationinmieresonantgaasnanowires
AT lucacarletti secondharmonicgenerationinmieresonantgaasnanowires
AT mariaantoniettavincenti secondharmonicgenerationinmieresonantgaasnanowires
AT costantinodeangelis secondharmonicgenerationinmieresonantgaasnanowires
AT michaelscalora secondharmonicgenerationinmieresonantgaasnanowires
_version_ 1725206022551764992