Waterborne polyurethane as a carbon coating for micrometre-sized silicon-based lithium-ion battery anode material

Waterborne polyurethane (WPU) is first used as a carbon-coating source for micrometre-sized silicon. The remaining nitrogen (N) and oxygen (O) heteroatoms during pyrolysis of the WPU interact with the surface oxide on the silicon (Si) particles via hydrogen bonding (Si–OH⋯N and Si–OH⋯O). The N and O...

Full description

Bibliographic Details
Main Authors: Chunfeng Yan, Tao Huang, Xiangzhen Zheng, Cuiran Gong, Maoxiang Wu
Format: Article
Language:English
Published: The Royal Society 2018-01-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180311
Description
Summary:Waterborne polyurethane (WPU) is first used as a carbon-coating source for micrometre-sized silicon. The remaining nitrogen (N) and oxygen (O) heteroatoms during pyrolysis of the WPU interact with the surface oxide on the silicon (Si) particles via hydrogen bonding (Si–OH⋯N and Si–OH⋯O). The N and O atoms involved in the carbon network can interact with the lithium ions, which is conducive to lithium-ion insertion. A satisfactory performance of the Si@N, O-doped carbon (Si@CNO) anode is gained at 25 and 55°C. The Si@CNO anode shows stable cycling performance (capacity retention of 70.0% over 100 cycles at 25°C and 60.3% over 90 cycles at 55°C with a current density of 500 mA g−1) and a superior rate capacity of 864.1 mA h g−1 at 1000 mA g−1 (25°C). The improved electrochemical performance of the Si@CNO electrode is attributed to the enhanced electrical conductivity and structural stability.
ISSN:2054-5703