Size Controlled CaF2 Nanocubes and Their Dosimetric Properties Using Photoluminescence Technique

A new synthetic chemical coprecipitation route for the preparation of well-crystallized size controlled nano- and microcrystalline cubes of CaF2 is reported. Crystalline cubes in the range of 2 μm–20 nm could be synthesized and their sizes were controlled by varying the solvent : cosolvent ratio. Th...

Full description

Bibliographic Details
Main Author: Najlaa D. Alharbi
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2015/136957
Description
Summary:A new synthetic chemical coprecipitation route for the preparation of well-crystallized size controlled nano- and microcrystalline cubes of CaF2 is reported. Crystalline cubes in the range of 2 μm–20 nm could be synthesized and their sizes were controlled by varying the solvent : cosolvent ratio. The as-synthesized CaF2 nanocubes were characterized by different techniques. Photoluminescence (PL) emission spectrum of CaF2 nanocrystalline powder showed strong emission band at 415 nm. Moreover, the effect of Eu as a dopant on the emission spectrum of CaF2 was investigated. This dopant was found to get incorporated in its Eu2+ and Eu3+ forms. The as-produced nanocubes were exposed to UV irradiation and the corresponding PL emission was studied. Excellent results are obtained, where CaF2:Eu nanocubes were found to be highly sensitive and might be suitable for esteeming the doses of UV irradiation using the PL technique.
ISSN:1687-4110
1687-4129