Hamilton-Poisson Realizations of the Integrable Deformations of the Rikitake System

Integrable deformations of an integrable case of the Rikitake system are constructed by modifying its constants of motions. Hamilton-Poisson realizations of these integrable deformations are given. Considering two concrete deformation functions, a Hamilton-Poisson approach of the obtained system is...

Full description

Bibliographic Details
Main Author: Cristian Lăzureanu
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2017/4596951
Description
Summary:Integrable deformations of an integrable case of the Rikitake system are constructed by modifying its constants of motions. Hamilton-Poisson realizations of these integrable deformations are given. Considering two concrete deformation functions, a Hamilton-Poisson approach of the obtained system is presented. More precisely, the stability of the equilibrium points and the existence of the periodic orbits are proved. Furthermore, the image of the energy-Casimir mapping is determined and its connections with the dynamical elements of the considered system are pointed out.
ISSN:1687-9120
1687-9139