Genome sequencing and annotation of a Campylobacter coli strain isolated from milk with multidrug resistance

As the most prevalent bacterial cause of human gastroenteritis, food-borne Campylobacter infections pose a serious threat to public health. Whole Genome Sequencing (WGS) is a tool providing quick and inexpensive approaches for analysis of food-borne pathogen epidemics. Here we report the WGS and ann...

Full description

Bibliographic Details
Main Authors: Kun C. Liu, Karen C. Jinneman, Jason Neal-McKinney, Wen-Hsin Wu, Daniel H. Rice
Format: Article
Language:English
Published: Elsevier 2016-06-01
Series:Genomics Data
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213596016300629
Description
Summary:As the most prevalent bacterial cause of human gastroenteritis, food-borne Campylobacter infections pose a serious threat to public health. Whole Genome Sequencing (WGS) is a tool providing quick and inexpensive approaches for analysis of food-borne pathogen epidemics. Here we report the WGS and annotation of a Campylobacter coli strain, FNW20G12, which was isolated from milk in the United States in 1997 and carries multidrug resistance. The draft genome of FNW20G12 (DDBJ/ENA/GenBank accession number LWIH00000000) contains 1, 855,435 bp (GC content 31.4%) with 1902 annotated coding regions, 48 RNAs and resistance to aminoglycoside, beta-lactams, tetracycline, as well as fluoroquinolones. There are very few genome reports of C. coli from dairy products with multidrug resistance. Here the draft genome of FNW20G12, a C. coli strain isolated from raw milk, is presented to aid in the epidemiology study of C. coli antimicrobial resistance and role in foodborne outbreak.
ISSN:2213-5960