Oscillation Criteria of Second-Order Dynamic Equations on Time Scales
In this paper, we consider the oscillation behavior of the following second-order nonlinear dynamic equation. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators=""...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/16/1867 |
id |
doaj-903b51836753407ba0b00e7205468352 |
---|---|
record_format |
Article |
spelling |
doaj-903b51836753407ba0b00e72054683522021-08-26T14:01:59ZengMDPI AGMathematics2227-73902021-08-0191867186710.3390/math9161867Oscillation Criteria of Second-Order Dynamic Equations on Time ScalesYa-Ru Zhu0Zhong-Xuan Mao1Shi-Pu Liu2Jing-Feng Tian3Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaIn this paper, we consider the oscillation behavior of the following second-order nonlinear dynamic equation. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="(" close=")"><mi>λ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi mathvariant="sans-serif">Ψ</mi><mfenced separators="" open="(" close=")"><mfrac><mn>1</mn><mrow><msup><mi>φ</mi><mo>Δ</mo></msup><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></mfrac><msup><mfenced separators="" open="(" close=")"><mi>y</mi><mo>(</mo><mi>φ</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>)</mo></mfenced><mo>Δ</mo></msup></mfenced></mfenced><mo>Δ</mo></msup><mo>+</mo><mi>η</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>Φ</mo><mrow><mo>(</mo><mi>y</mi><mrow><mo>(</mo><mi>τ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>s</mi><mo>∈</mo><msub><mrow><mo>[</mo><msub><mi>s</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mi mathvariant="double-struck">T</mi></msub><mo>.</mo></mrow></semantics></math></inline-formula> By employing generalized Riccati transformation and inequality scaling technique, we establish some oscillation criteria.https://www.mdpi.com/2227-7390/9/16/1867second order dynamic equationoscillationnonlinear equationRiccati techniquedelta derivative |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ya-Ru Zhu Zhong-Xuan Mao Shi-Pu Liu Jing-Feng Tian |
spellingShingle |
Ya-Ru Zhu Zhong-Xuan Mao Shi-Pu Liu Jing-Feng Tian Oscillation Criteria of Second-Order Dynamic Equations on Time Scales Mathematics second order dynamic equation oscillation nonlinear equation Riccati technique delta derivative |
author_facet |
Ya-Ru Zhu Zhong-Xuan Mao Shi-Pu Liu Jing-Feng Tian |
author_sort |
Ya-Ru Zhu |
title |
Oscillation Criteria of Second-Order Dynamic Equations on Time Scales |
title_short |
Oscillation Criteria of Second-Order Dynamic Equations on Time Scales |
title_full |
Oscillation Criteria of Second-Order Dynamic Equations on Time Scales |
title_fullStr |
Oscillation Criteria of Second-Order Dynamic Equations on Time Scales |
title_full_unstemmed |
Oscillation Criteria of Second-Order Dynamic Equations on Time Scales |
title_sort |
oscillation criteria of second-order dynamic equations on time scales |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-08-01 |
description |
In this paper, we consider the oscillation behavior of the following second-order nonlinear dynamic equation. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="(" close=")"><mi>λ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi mathvariant="sans-serif">Ψ</mi><mfenced separators="" open="(" close=")"><mfrac><mn>1</mn><mrow><msup><mi>φ</mi><mo>Δ</mo></msup><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></mfrac><msup><mfenced separators="" open="(" close=")"><mi>y</mi><mo>(</mo><mi>φ</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>)</mo></mfenced><mo>Δ</mo></msup></mfenced></mfenced><mo>Δ</mo></msup><mo>+</mo><mi>η</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>Φ</mo><mrow><mo>(</mo><mi>y</mi><mrow><mo>(</mo><mi>τ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>s</mi><mo>∈</mo><msub><mrow><mo>[</mo><msub><mi>s</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mi mathvariant="double-struck">T</mi></msub><mo>.</mo></mrow></semantics></math></inline-formula> By employing generalized Riccati transformation and inequality scaling technique, we establish some oscillation criteria. |
topic |
second order dynamic equation oscillation nonlinear equation Riccati technique delta derivative |
url |
https://www.mdpi.com/2227-7390/9/16/1867 |
work_keys_str_mv |
AT yaruzhu oscillationcriteriaofsecondorderdynamicequationsontimescales AT zhongxuanmao oscillationcriteriaofsecondorderdynamicequationsontimescales AT shipuliu oscillationcriteriaofsecondorderdynamicequationsontimescales AT jingfengtian oscillationcriteriaofsecondorderdynamicequationsontimescales |
_version_ |
1721191841422901248 |