Oscillation Criteria of Second-Order Dynamic Equations on Time Scales

In this paper, we consider the oscillation behavior of the following second-order nonlinear dynamic equation. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators=""...

Full description

Bibliographic Details
Main Authors: Ya-Ru Zhu, Zhong-Xuan Mao, Shi-Pu Liu, Jing-Feng Tian
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/16/1867
id doaj-903b51836753407ba0b00e7205468352
record_format Article
spelling doaj-903b51836753407ba0b00e72054683522021-08-26T14:01:59ZengMDPI AGMathematics2227-73902021-08-0191867186710.3390/math9161867Oscillation Criteria of Second-Order Dynamic Equations on Time ScalesYa-Ru Zhu0Zhong-Xuan Mao1Shi-Pu Liu2Jing-Feng Tian3Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaDepartment of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, ChinaIn this paper, we consider the oscillation behavior of the following second-order nonlinear dynamic equation. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="(" close=")"><mi>λ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi mathvariant="sans-serif">Ψ</mi><mfenced separators="" open="(" close=")"><mfrac><mn>1</mn><mrow><msup><mi>φ</mi><mo>Δ</mo></msup><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></mfrac><msup><mfenced separators="" open="(" close=")"><mi>y</mi><mo>(</mo><mi>φ</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>)</mo></mfenced><mo>Δ</mo></msup></mfenced></mfenced><mo>Δ</mo></msup><mo>+</mo><mi>η</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>Φ</mo><mrow><mo>(</mo><mi>y</mi><mrow><mo>(</mo><mi>τ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>s</mi><mo>∈</mo><msub><mrow><mo>[</mo><msub><mi>s</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mi mathvariant="double-struck">T</mi></msub><mo>.</mo></mrow></semantics></math></inline-formula> By employing generalized Riccati transformation and inequality scaling technique, we establish some oscillation criteria.https://www.mdpi.com/2227-7390/9/16/1867second order dynamic equationoscillationnonlinear equationRiccati techniquedelta derivative
collection DOAJ
language English
format Article
sources DOAJ
author Ya-Ru Zhu
Zhong-Xuan Mao
Shi-Pu Liu
Jing-Feng Tian
spellingShingle Ya-Ru Zhu
Zhong-Xuan Mao
Shi-Pu Liu
Jing-Feng Tian
Oscillation Criteria of Second-Order Dynamic Equations on Time Scales
Mathematics
second order dynamic equation
oscillation
nonlinear equation
Riccati technique
delta derivative
author_facet Ya-Ru Zhu
Zhong-Xuan Mao
Shi-Pu Liu
Jing-Feng Tian
author_sort Ya-Ru Zhu
title Oscillation Criteria of Second-Order Dynamic Equations on Time Scales
title_short Oscillation Criteria of Second-Order Dynamic Equations on Time Scales
title_full Oscillation Criteria of Second-Order Dynamic Equations on Time Scales
title_fullStr Oscillation Criteria of Second-Order Dynamic Equations on Time Scales
title_full_unstemmed Oscillation Criteria of Second-Order Dynamic Equations on Time Scales
title_sort oscillation criteria of second-order dynamic equations on time scales
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-08-01
description In this paper, we consider the oscillation behavior of the following second-order nonlinear dynamic equation. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="(" close=")"><mi>λ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mi mathvariant="sans-serif">Ψ</mi><mfenced separators="" open="(" close=")"><mfrac><mn>1</mn><mrow><msup><mi>φ</mi><mo>Δ</mo></msup><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></mfrac><msup><mfenced separators="" open="(" close=")"><mi>y</mi><mo>(</mo><mi>φ</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>)</mo></mfenced><mo>Δ</mo></msup></mfenced></mfenced><mo>Δ</mo></msup><mo>+</mo><mi>η</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>Φ</mo><mrow><mo>(</mo><mi>y</mi><mrow><mo>(</mo><mi>τ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>s</mi><mo>∈</mo><msub><mrow><mo>[</mo><msub><mi>s</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mi mathvariant="double-struck">T</mi></msub><mo>.</mo></mrow></semantics></math></inline-formula> By employing generalized Riccati transformation and inequality scaling technique, we establish some oscillation criteria.
topic second order dynamic equation
oscillation
nonlinear equation
Riccati technique
delta derivative
url https://www.mdpi.com/2227-7390/9/16/1867
work_keys_str_mv AT yaruzhu oscillationcriteriaofsecondorderdynamicequationsontimescales
AT zhongxuanmao oscillationcriteriaofsecondorderdynamicequationsontimescales
AT shipuliu oscillationcriteriaofsecondorderdynamicequationsontimescales
AT jingfengtian oscillationcriteriaofsecondorderdynamicequationsontimescales
_version_ 1721191841422901248