Correlation between Porosity and Electrical-Mechanical Properties of Carbon Nanotube Buckypaper with Various Porosities
Porous carbon nanotube (CNT) buckypapers (BPs) with various porosities were obtained by using a positive pressure filtration method. The porosity of the BPs fell into a wide range of 11.3–39.3%. Electrical conductivities and tensile mechanical properties of the prepared BPs were then measured and co...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | Journal of Nanomaterials |
Online Access: | http://dx.doi.org/10.1155/2015/945091 |
Summary: | Porous carbon nanotube (CNT) buckypapers (BPs) with various porosities were obtained by using a positive pressure filtration method. The porosity of the BPs fell into a wide range of 11.3–39.3%. Electrical conductivities and tensile mechanical properties of the prepared BPs were then measured and correlated with the porosity of the CNT BPs. Results demonstrated that the conductivities, tensile strength, and elastic modulus of the BPs could decrease by increasing their porosity. The elongation at break of the BPs on the other hand did increase significantly, suggesting improved toughness of the BPs. The obtained electrical conductivity and tensile strength of the porous BPs can reach nearly 0.6 S/m and 26 MPa, respectively, which may be potentially useful in composites reinforcement and conductive materials. |
---|---|
ISSN: | 1687-4110 1687-4129 |