ASSESSING HYPERSPECTRAL VEGETATION INDICES FOR ESTIMATING LEAF CHLOROPHYLL CONCENTRATION OF SUMMER BARLEY
Hyperspectral reflectance data were collected at 7 critical phenological stages in a summer barley field with 7 varieties in 2010, without artificial nutrient gradients. Throughout the range of 350 to 1800 nm, all possible two-bands combinations for the simple ratio (SR = R<i>j</i>/R<...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-07-01
|
Series: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-7/89/2012/isprsannals-I-7-89-2012.pdf |
id |
doaj-90327930ee57483a855f04620cd1fbdf |
---|---|
record_format |
Article |
spelling |
doaj-90327930ee57483a855f04620cd1fbdf2020-11-24T21:45:06ZengCopernicus PublicationsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2194-90422194-90502012-07-01I-7899410.5194/isprsannals-I-7-89-2012ASSESSING HYPERSPECTRAL VEGETATION INDICES FOR ESTIMATING LEAF CHLOROPHYLL CONCENTRATION OF SUMMER BARLEYK. Yu0V. Lenz-Wiedemann1G. Leufen2M. Hunsche3G. Noga4X. Chen5G. Bareth6Institute of Geography (GIS & Remote Sensing Group), University of Cologne, 50923 Köln, GermanyInstitute of Geography (GIS & Remote Sensing Group), University of Cologne, 50923 Köln, GermanyINRES- Horticultural Science, University of Bonn, 53121 Bonn, GermanyINRES- Horticultural Science, University of Bonn, 53121 Bonn, GermanyINRES- Horticultural Science, University of Bonn, 53121 Bonn, GermanyCollege of Resources & Environmental Sciences, China Agricultural University, 100094 Beijing, ChinaInstitute of Geography (GIS & Remote Sensing Group), University of Cologne, 50923 Köln, GermanyHyperspectral reflectance data were collected at 7 critical phenological stages in a summer barley field with 7 varieties in 2010, without artificial nutrient gradients. Throughout the range of 350 to 1800 nm, all possible two-bands combinations for the simple ratio (SR = R<i>j</i>/R<i>i</i>) and the normalized difference vegetation index (NDVI = (R<i>j</i>−R<i>i</i>)/(R<i>j</i>+R<i>i</i>)) were evaluated using linear regression analysis against the leaf chlorophyll concentration (LCC). This study introduces a more comprehensive way of using the "correlation matrix" method for selecting sensitive bands and shows that in this way the newly selected SRs may outperform the NDVIs for estimating LCC. With this method, the selection of two-bands combinations for the SRs and NDVIs improved the performance for estimating LCC. Both the new SR (734, 629) and the new NDVI (667, 740) explained more than 74% of the variation in LCC across all the growth stages and all varieties. Compared with published indices, newly selected SRs and NDVIs improved the predictive ability for LCC. The most significant improvement was observed with increasing of <i>R<sup>2</sup></i> values by 13% for SR and 6% for NDVI. The overall performances of both newly selected indices and published indices were significantly influenced by the varieties. Moreover, Ultraviolet, Violet and Blue bands are more effective for estimating the LCC for a single variety, whereas Red-edge bands are more effective for that across all varieties. Therefore, a conclusion can be drawn that selecting twobands combinations significantly improves the capability of SRs and NDVIs for estimating the LCC of summer barley.http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-7/89/2012/isprsannals-I-7-89-2012.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
K. Yu V. Lenz-Wiedemann G. Leufen M. Hunsche G. Noga X. Chen G. Bareth |
spellingShingle |
K. Yu V. Lenz-Wiedemann G. Leufen M. Hunsche G. Noga X. Chen G. Bareth ASSESSING HYPERSPECTRAL VEGETATION INDICES FOR ESTIMATING LEAF CHLOROPHYLL CONCENTRATION OF SUMMER BARLEY ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
K. Yu V. Lenz-Wiedemann G. Leufen M. Hunsche G. Noga X. Chen G. Bareth |
author_sort |
K. Yu |
title |
ASSESSING HYPERSPECTRAL VEGETATION INDICES FOR ESTIMATING LEAF CHLOROPHYLL CONCENTRATION OF SUMMER BARLEY |
title_short |
ASSESSING HYPERSPECTRAL VEGETATION INDICES FOR ESTIMATING LEAF CHLOROPHYLL CONCENTRATION OF SUMMER BARLEY |
title_full |
ASSESSING HYPERSPECTRAL VEGETATION INDICES FOR ESTIMATING LEAF CHLOROPHYLL CONCENTRATION OF SUMMER BARLEY |
title_fullStr |
ASSESSING HYPERSPECTRAL VEGETATION INDICES FOR ESTIMATING LEAF CHLOROPHYLL CONCENTRATION OF SUMMER BARLEY |
title_full_unstemmed |
ASSESSING HYPERSPECTRAL VEGETATION INDICES FOR ESTIMATING LEAF CHLOROPHYLL CONCENTRATION OF SUMMER BARLEY |
title_sort |
assessing hyperspectral vegetation indices for estimating leaf chlorophyll concentration of summer barley |
publisher |
Copernicus Publications |
series |
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
2194-9042 2194-9050 |
publishDate |
2012-07-01 |
description |
Hyperspectral reflectance data were collected at 7 critical phenological stages in a summer barley field with 7 varieties in 2010,
without artificial nutrient gradients. Throughout the range of 350 to 1800 nm, all possible two-bands combinations for the simple
ratio (SR = R<i>j</i>/R<i>i</i>) and the normalized difference vegetation index (NDVI = (R<i>j</i>−R<i>i</i>)/(R<i>j</i>+R<i>i</i>)) were evaluated using linear regression
analysis against the leaf chlorophyll concentration (LCC). This study introduces a more comprehensive way of using the
"correlation matrix" method for selecting sensitive bands and shows that in this way the newly selected SRs may outperform the
NDVIs for estimating LCC. With this method, the selection of two-bands combinations for the SRs and NDVIs improved the
performance for estimating LCC. Both the new SR (734, 629) and the new NDVI (667, 740) explained more than 74% of the
variation in LCC across all the growth stages and all varieties. Compared with published indices, newly selected SRs and NDVIs
improved the predictive ability for LCC. The most significant improvement was observed with increasing of <i>R<sup>2</sup></i> values by 13% for
SR and 6% for NDVI. The overall performances of both newly selected indices and published indices were significantly influenced
by the varieties. Moreover, Ultraviolet, Violet and Blue bands are more effective for estimating the LCC for a single variety,
whereas Red-edge bands are more effective for that across all varieties. Therefore, a conclusion can be drawn that selecting twobands
combinations significantly improves the capability of SRs and NDVIs for estimating the LCC of summer barley. |
url |
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-7/89/2012/isprsannals-I-7-89-2012.pdf |
work_keys_str_mv |
AT kyu assessinghyperspectralvegetationindicesforestimatingleafchlorophyllconcentrationofsummerbarley AT vlenzwiedemann assessinghyperspectralvegetationindicesforestimatingleafchlorophyllconcentrationofsummerbarley AT gleufen assessinghyperspectralvegetationindicesforestimatingleafchlorophyllconcentrationofsummerbarley AT mhunsche assessinghyperspectralvegetationindicesforestimatingleafchlorophyllconcentrationofsummerbarley AT gnoga assessinghyperspectralvegetationindicesforestimatingleafchlorophyllconcentrationofsummerbarley AT xchen assessinghyperspectralvegetationindicesforestimatingleafchlorophyllconcentrationofsummerbarley AT gbareth assessinghyperspectralvegetationindicesforestimatingleafchlorophyllconcentrationofsummerbarley |
_version_ |
1725906626401009664 |