Derivation of the Critical Point Scaling Hypothesis Using Thermodynamics Only
Based on the foundations of thermodynamics and the equilibrium conditions for the coexistence of two phases in a magnetic Ising-like system, we show, first, that there is a critical point where the isothermal susceptibility diverges and the specific heat may remain finite, and second, that near the...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/22/5/502 |
Summary: | Based on the foundations of thermodynamics and the equilibrium conditions for the coexistence of two phases in a magnetic Ising-like system, we show, first, that there is a critical point where the isothermal susceptibility diverges and the specific heat may remain finite, and second, that near the critical point the entropy of the system, and therefore all free energies, do obey scaling. Although we limit ourselves to such a system, we elaborate about the possibilities of finding universality, as well as the precise values of the critical exponents using thermodynamics only. |
---|---|
ISSN: | 1099-4300 |