Regularity of generalized Naveir-Stokes equations in terms of direction of the velocity

In this article, the author studies the regularity of 3D generalized Navier-Stokes (GNS) equations with fractional dissipative terms $(-Delta)^{alpha} u$. It is proved that if $hbox{div} (u / |u|) in L^p (0, T ; L^q (mathbb{R}^3))$ with $$ frac{2 alpha}{p} + frac{3}{q} leq 2 alpha - frac{3}{2},...

Full description

Bibliographic Details
Main Author: Yuwen Luo
Format: Article
Language:English
Published: Texas State University 2010-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2010/105/abstr.html
id doaj-9023b4c4095c4e2cbba23ea363486fa2
record_format Article
spelling doaj-9023b4c4095c4e2cbba23ea363486fa22020-11-24T21:08:39ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912010-08-012010105,15Regularity of generalized Naveir-Stokes equations in terms of direction of the velocityYuwen LuoIn this article, the author studies the regularity of 3D generalized Navier-Stokes (GNS) equations with fractional dissipative terms $(-Delta)^{alpha} u$. It is proved that if $hbox{div} (u / |u|) in L^p (0, T ; L^q (mathbb{R}^3))$ with $$ frac{2 alpha}{p} + frac{3}{q} leq 2 alpha - frac{3}{2},quad frac{6}{4 alpha-3} < q leq infty . $$ then any smooth on GNS in $[0,T)$ remains smooth on $[0, T]$. http://ejde.math.txstate.edu/Volumes/2010/105/abstr.htmlGeneralized Navier-Stokes equationregularitySerrin criteria
collection DOAJ
language English
format Article
sources DOAJ
author Yuwen Luo
spellingShingle Yuwen Luo
Regularity of generalized Naveir-Stokes equations in terms of direction of the velocity
Electronic Journal of Differential Equations
Generalized Navier-Stokes equation
regularity
Serrin criteria
author_facet Yuwen Luo
author_sort Yuwen Luo
title Regularity of generalized Naveir-Stokes equations in terms of direction of the velocity
title_short Regularity of generalized Naveir-Stokes equations in terms of direction of the velocity
title_full Regularity of generalized Naveir-Stokes equations in terms of direction of the velocity
title_fullStr Regularity of generalized Naveir-Stokes equations in terms of direction of the velocity
title_full_unstemmed Regularity of generalized Naveir-Stokes equations in terms of direction of the velocity
title_sort regularity of generalized naveir-stokes equations in terms of direction of the velocity
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2010-08-01
description In this article, the author studies the regularity of 3D generalized Navier-Stokes (GNS) equations with fractional dissipative terms $(-Delta)^{alpha} u$. It is proved that if $hbox{div} (u / |u|) in L^p (0, T ; L^q (mathbb{R}^3))$ with $$ frac{2 alpha}{p} + frac{3}{q} leq 2 alpha - frac{3}{2},quad frac{6}{4 alpha-3} < q leq infty . $$ then any smooth on GNS in $[0,T)$ remains smooth on $[0, T]$.
topic Generalized Navier-Stokes equation
regularity
Serrin criteria
url http://ejde.math.txstate.edu/Volumes/2010/105/abstr.html
work_keys_str_mv AT yuwenluo regularityofgeneralizednaveirstokesequationsintermsofdirectionofthevelocity
_version_ 1716759956136394752