Characterization and Evaluation of OsLCT1 and OsNramp5 Mutants Generated Through CRISPR/Cas9-Mediated Mutagenesis for Breeding Low Cd Rice

To explore how rice (Oryza sativa L.) can be safely produced in Cd-polluted soil, OsLCT1 and OsNramp5 mutant lines were generated by CRISPR/Cas9-mediated mutagenesis. One of OsLCT1 mutant (lct1×1) and two of OsNramp5 mutants (nramp5×7 and nramp5×9) were evaluated for grain Cd accumulation and agrono...

Full description

Bibliographic Details
Main Authors: Liu Songmei, Jiang Jie, Liu Yang, Meng Jun, Xu Shouling, Tan Yuanyuan, Li Youfa, Shu Qingyao, Huang Jianzhong
Format: Article
Language:English
Published: Elsevier 2019-03-01
Series:Rice Science
Online Access:http://www.sciencedirect.com/science/article/pii/S1672630819300034
Description
Summary:To explore how rice (Oryza sativa L.) can be safely produced in Cd-polluted soil, OsLCT1 and OsNramp5 mutant lines were generated by CRISPR/Cas9-mediated mutagenesis. One of OsLCT1 mutant (lct1×1) and two of OsNramp5 mutants (nramp5×7 and nramp5×9) were evaluated for grain Cd accumulation and agronomic performances. In paddy field soil containing approximately 0.9 mg/kg Cd, lct1×1 grains contained approximately 40% (0.17 mg/kg) of the Cd concentration of the wild type parental line, less than the China National Food Safety Standard (0.20 mg/kg). Both OsNramp5 mutants showed low grain Cd accumulation (< 0.06 mg/kg) in the paddy (approximately 0.9 mg/kg Cd) or in pots in soil spiked with 2 mg/kg Cd. However, only nramp5×7 showed normal growth and yield, whereas the growth of nramp5×9 was severely impaired. The study showed that lct1×1 could be used to produce rice grains safe for human consumption in lightly contaminated paddy soils and nramp5×7 used in soils contaminated by much higher levels of Cd. Keywords: cadmium, rice, OsNramp5, OsLCT1, genome-editing, heavy metal contamination, CRISPR, Cas9
ISSN:1672-6308