Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein.
Our ability to identify genes that participate in cell growth and division is limited because their loss often leads to lethality. A solution to this is to isolate conditional mutants where the phenotype is visible under restrictive conditions. Here, we capitalize on the haploid growth-phase of the...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-05-01
|
Series: | PLoS Genetics |
Online Access: | http://europepmc.org/articles/PMC5944918?pdf=render |
id |
doaj-900d78187fb64643be74f77d763779b8 |
---|---|
record_format |
Article |
spelling |
doaj-900d78187fb64643be74f77d763779b82020-11-24T21:49:54ZengPublic Library of Science (PLoS)PLoS Genetics1553-73901553-74042018-05-01145e100722110.1371/journal.pgen.1007221Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein.Xinxin DingLeah M PervereCarl BascomJeffrey P BibeauSakshi KhuranaAllison M ButtRobert G OrrPatrick J FlahertyMagdalena BezanillaLuis VidaliOur ability to identify genes that participate in cell growth and division is limited because their loss often leads to lethality. A solution to this is to isolate conditional mutants where the phenotype is visible under restrictive conditions. Here, we capitalize on the haploid growth-phase of the moss Physcomitrella patens to identify conditional loss-of-growth (CLoG) mutants with impaired growth at high temperature. We used whole-genome sequencing of pooled segregants to pinpoint the lesion of one of these mutants (clog1) and validated the identified mutation by rescuing the conditional phenotype by homologous recombination. We found that CLoG1 is a novel and ancient gene conserved in plants. At the restrictive temperature, clog1 plants have smaller cells but can complete cell division, indicating an important role of CLoG1 in cell growth, but not an essential role in cell division. Fluorescent protein fusions of CLoG1 indicate it is localized to microtubules with a bias towards depolymerizing microtubule ends. Silencing CLoG1 decreases microtubule dynamics, suggesting that CLoG1 plays a critical role in regulating microtubule dynamics. By discovering a novel gene critical for plant growth, our work demonstrates that P. patens is an excellent genetic system to study genes with a fundamental role in plant cell growth.http://europepmc.org/articles/PMC5944918?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xinxin Ding Leah M Pervere Carl Bascom Jeffrey P Bibeau Sakshi Khurana Allison M Butt Robert G Orr Patrick J Flaherty Magdalena Bezanilla Luis Vidali |
spellingShingle |
Xinxin Ding Leah M Pervere Carl Bascom Jeffrey P Bibeau Sakshi Khurana Allison M Butt Robert G Orr Patrick J Flaherty Magdalena Bezanilla Luis Vidali Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. PLoS Genetics |
author_facet |
Xinxin Ding Leah M Pervere Carl Bascom Jeffrey P Bibeau Sakshi Khurana Allison M Butt Robert G Orr Patrick J Flaherty Magdalena Bezanilla Luis Vidali |
author_sort |
Xinxin Ding |
title |
Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. |
title_short |
Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. |
title_full |
Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. |
title_fullStr |
Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. |
title_full_unstemmed |
Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. |
title_sort |
conditional genetic screen in physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Genetics |
issn |
1553-7390 1553-7404 |
publishDate |
2018-05-01 |
description |
Our ability to identify genes that participate in cell growth and division is limited because their loss often leads to lethality. A solution to this is to isolate conditional mutants where the phenotype is visible under restrictive conditions. Here, we capitalize on the haploid growth-phase of the moss Physcomitrella patens to identify conditional loss-of-growth (CLoG) mutants with impaired growth at high temperature. We used whole-genome sequencing of pooled segregants to pinpoint the lesion of one of these mutants (clog1) and validated the identified mutation by rescuing the conditional phenotype by homologous recombination. We found that CLoG1 is a novel and ancient gene conserved in plants. At the restrictive temperature, clog1 plants have smaller cells but can complete cell division, indicating an important role of CLoG1 in cell growth, but not an essential role in cell division. Fluorescent protein fusions of CLoG1 indicate it is localized to microtubules with a bias towards depolymerizing microtubule ends. Silencing CLoG1 decreases microtubule dynamics, suggesting that CLoG1 plays a critical role in regulating microtubule dynamics. By discovering a novel gene critical for plant growth, our work demonstrates that P. patens is an excellent genetic system to study genes with a fundamental role in plant cell growth. |
url |
http://europepmc.org/articles/PMC5944918?pdf=render |
work_keys_str_mv |
AT xinxinding conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein AT leahmpervere conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein AT carlbascom conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein AT jeffreypbibeau conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein AT sakshikhurana conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein AT allisonmbutt conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein AT robertgorr conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein AT patrickjflaherty conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein AT magdalenabezanilla conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein AT luisvidali conditionalgeneticscreeninphyscomitrellapatensrevealsanovelmicrotubuledepolymerizingendtrackingprotein |
_version_ |
1725886673907089408 |