Boundedness of strong maximal functions with respect to non-doubling measures

Abstract The main purpose of this paper is to establish a boundedness result for strong maximal functions with respect to certain non-doubling measures in R n $\mathbb{R}^{n}$ . More precisely, let d μ ( x 1 , … , x n ) = d μ 1 ( x 1 ) ⋯ d μ n ( x n ) $d\mu(x_{1}, \ldots, x_{n})=d\mu_{1}(x_{1})\cdot...

Full description

Bibliographic Details
Main Authors: Wei Ding, LiXin Jiang, YuePing Zhu
Format: Article
Language:English
Published: SpringerOpen 2016-11-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1229-3
id doaj-8fe84264d96c46ba82d9816abf863d42
record_format Article
spelling doaj-8fe84264d96c46ba82d9816abf863d422020-11-24T22:16:08ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-11-012016111410.1186/s13660-016-1229-3Boundedness of strong maximal functions with respect to non-doubling measuresWei Ding0LiXin Jiang1YuePing Zhu2School of Sciences, Nantong UniversityDepartment of Mathematics, Nantong Normal CollegeDepartment of Mathematics, Nantong Normal CollegeAbstract The main purpose of this paper is to establish a boundedness result for strong maximal functions with respect to certain non-doubling measures in R n $\mathbb{R}^{n}$ . More precisely, let d μ ( x 1 , … , x n ) = d μ 1 ( x 1 ) ⋯ d μ n ( x n ) $d\mu(x_{1}, \ldots, x_{n})=d\mu_{1}(x_{1})\cdots d\mu_{n}(x_{n})$ be a product measure which is not necessarily doubling in R n $\mathbb{R}^{n}$ (only assuming d μ i $d\mu_{i}$ is doubling on R $\mathbb{R}$ for i = 2 , … , n $i=2, \ldots, n$ ), and let ω be a nonnegative and locally integral function such that ω i ( ⋅ ) = ω ( x 1 , … , x i − 1 , ⋅ , x i + 1 , … , x n ) $\omega _{i}(\cdot)=\omega(x_{1}, \ldots, x_{i-1}, \cdot, x_{i+1}, \ldots, x_{n})$ is in A ∞ 1 ( d μ i ) $A_{\infty}^{1}(d\mu_{i})$ uniformly in x 1 , … , x i − 1 , x i + 1 , … , x n $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$ for each i = 1 , … , n − 1 $i=1, \ldots, n-1$ , let d ν = ω d μ $d\nu=\omega \,d\mu$ , ν ( E ) = ∫ E ω ( y ) d μ ( y ) $\nu(E)=\int_{E} \omega(y)\,d\mu(y)$ , and M ω d μ n $M_{\omega \,d\mu}^{n}$ be the strong maximal function defined by M ω d μ n f ( x ) = sup x ∈ R ∈ R 1 ν ( R ) ∫ R | f ( y ) | ω ( y ) d μ ( y ) , $$M_{\omega \,d\mu}^{n} f(x)=\sup_{x\in R\in\mathcal{R}} \frac{1}{\nu (R)} \int_{R} \bigl\vert f(y) \bigr\vert \omega(y)\,d\mu(y), $$ where R $\mathcal{R}$ is the collection of rectangles with sides parallel to the coordinate axes in  R n $\mathbb{R}^{n}$ . Then we show that M ω d μ n $M_{\omega \,d\mu}^{n} $ is bounded on L ω d μ p ( R n ) $L^{p}_{\omega \,d\mu}(\mathbb{R}^{n})$ for 1 < p < ∞ $1< p<\infty$ . This extends an earlier result of Fefferman (Am. J. Math. 103:33-40, 1981) who established the L p $L^{p}$ boundedness when d μ = d x $d\mu=dx$ is the Lebesgue measure on R n $\mathbb{R}^{n}$ and d ν = ω d μ $d\nu=\omega \,d\mu$ is doubling with respect to rectangles in R n $\mathbb{R}^{n}$ , ω satisfies a uniform A ∞ 1 $A^{1}_{\infty}$ condition in each of the variables except one. Moreover, we also establish some boundedness result for the Cordoba maximal functions (Córdoba A. in Harmonic Analysis in Euclidean Spaces, pp. 29-50, 1978) associated with the Córdoba-Zygmund dilation in R 3 $\mathbb{R}^{3}$ with respect to some non-doubling measures. This generalizes the result of Fefferman-Pipher (Am. J. Math. 119:337-369, 1997).http://link.springer.com/article/10.1186/s13660-016-1229-3strong maximal functionsnon-doubling measuresA ∞ $A^{\infty}$ weightsreverse Hölder inequalitygeometric covering lemmasCórdoba’s maximal functions
collection DOAJ
language English
format Article
sources DOAJ
author Wei Ding
LiXin Jiang
YuePing Zhu
spellingShingle Wei Ding
LiXin Jiang
YuePing Zhu
Boundedness of strong maximal functions with respect to non-doubling measures
Journal of Inequalities and Applications
strong maximal functions
non-doubling measures
A ∞ $A^{\infty}$ weights
reverse Hölder inequality
geometric covering lemmas
Córdoba’s maximal functions
author_facet Wei Ding
LiXin Jiang
YuePing Zhu
author_sort Wei Ding
title Boundedness of strong maximal functions with respect to non-doubling measures
title_short Boundedness of strong maximal functions with respect to non-doubling measures
title_full Boundedness of strong maximal functions with respect to non-doubling measures
title_fullStr Boundedness of strong maximal functions with respect to non-doubling measures
title_full_unstemmed Boundedness of strong maximal functions with respect to non-doubling measures
title_sort boundedness of strong maximal functions with respect to non-doubling measures
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2016-11-01
description Abstract The main purpose of this paper is to establish a boundedness result for strong maximal functions with respect to certain non-doubling measures in R n $\mathbb{R}^{n}$ . More precisely, let d μ ( x 1 , … , x n ) = d μ 1 ( x 1 ) ⋯ d μ n ( x n ) $d\mu(x_{1}, \ldots, x_{n})=d\mu_{1}(x_{1})\cdots d\mu_{n}(x_{n})$ be a product measure which is not necessarily doubling in R n $\mathbb{R}^{n}$ (only assuming d μ i $d\mu_{i}$ is doubling on R $\mathbb{R}$ for i = 2 , … , n $i=2, \ldots, n$ ), and let ω be a nonnegative and locally integral function such that ω i ( ⋅ ) = ω ( x 1 , … , x i − 1 , ⋅ , x i + 1 , … , x n ) $\omega _{i}(\cdot)=\omega(x_{1}, \ldots, x_{i-1}, \cdot, x_{i+1}, \ldots, x_{n})$ is in A ∞ 1 ( d μ i ) $A_{\infty}^{1}(d\mu_{i})$ uniformly in x 1 , … , x i − 1 , x i + 1 , … , x n $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$ for each i = 1 , … , n − 1 $i=1, \ldots, n-1$ , let d ν = ω d μ $d\nu=\omega \,d\mu$ , ν ( E ) = ∫ E ω ( y ) d μ ( y ) $\nu(E)=\int_{E} \omega(y)\,d\mu(y)$ , and M ω d μ n $M_{\omega \,d\mu}^{n}$ be the strong maximal function defined by M ω d μ n f ( x ) = sup x ∈ R ∈ R 1 ν ( R ) ∫ R | f ( y ) | ω ( y ) d μ ( y ) , $$M_{\omega \,d\mu}^{n} f(x)=\sup_{x\in R\in\mathcal{R}} \frac{1}{\nu (R)} \int_{R} \bigl\vert f(y) \bigr\vert \omega(y)\,d\mu(y), $$ where R $\mathcal{R}$ is the collection of rectangles with sides parallel to the coordinate axes in  R n $\mathbb{R}^{n}$ . Then we show that M ω d μ n $M_{\omega \,d\mu}^{n} $ is bounded on L ω d μ p ( R n ) $L^{p}_{\omega \,d\mu}(\mathbb{R}^{n})$ for 1 < p < ∞ $1< p<\infty$ . This extends an earlier result of Fefferman (Am. J. Math. 103:33-40, 1981) who established the L p $L^{p}$ boundedness when d μ = d x $d\mu=dx$ is the Lebesgue measure on R n $\mathbb{R}^{n}$ and d ν = ω d μ $d\nu=\omega \,d\mu$ is doubling with respect to rectangles in R n $\mathbb{R}^{n}$ , ω satisfies a uniform A ∞ 1 $A^{1}_{\infty}$ condition in each of the variables except one. Moreover, we also establish some boundedness result for the Cordoba maximal functions (Córdoba A. in Harmonic Analysis in Euclidean Spaces, pp. 29-50, 1978) associated with the Córdoba-Zygmund dilation in R 3 $\mathbb{R}^{3}$ with respect to some non-doubling measures. This generalizes the result of Fefferman-Pipher (Am. J. Math. 119:337-369, 1997).
topic strong maximal functions
non-doubling measures
A ∞ $A^{\infty}$ weights
reverse Hölder inequality
geometric covering lemmas
Córdoba’s maximal functions
url http://link.springer.com/article/10.1186/s13660-016-1229-3
work_keys_str_mv AT weiding boundednessofstrongmaximalfunctionswithrespecttonondoublingmeasures
AT lixinjiang boundednessofstrongmaximalfunctionswithrespecttonondoublingmeasures
AT yuepingzhu boundednessofstrongmaximalfunctionswithrespecttonondoublingmeasures
_version_ 1725791137784922112