Quantifying uncertainty in high-resolution remotely sensed topographic surveys for ephemeral gully channel monitoring

Spatio-temporal measurements of landform evolution provide the basis for process-based theory formulation and validation. Over time, field measurements of landforms have increased significantly worldwide, driven primarily by the availability of new surveying technologies. However, there is no st...

Full description

Bibliographic Details
Main Authors: R. R. Wells, H. G. Momm, C. Castillo
Format: Article
Language:English
Published: Copernicus Publications 2017-07-01
Series:Earth Surface Dynamics
Online Access:https://www.earth-surf-dynam.net/5/347/2017/esurf-5-347-2017.pdf
Description
Summary:Spatio-temporal measurements of landform evolution provide the basis for process-based theory formulation and validation. Over time, field measurements of landforms have increased significantly worldwide, driven primarily by the availability of new surveying technologies. However, there is no standardized or coordinated effort within the scientific community to collect morphological data in a dependable and reproducible manner, specifically when performing long-term small-scale process investigation studies. Measurements of the same site using identical methods and equipment, but performed at different time periods, may lead to incorrect estimates of landform change as a result of three-dimensional registration errors. This work evaluated measurements of an ephemeral gully channel located on agricultural land using multiple independent survey techniques for locational accuracy and their applicability in generating information for model development and validation. Terrestrial and unmanned aerial vehicle photogrammetry platforms were compared to terrestrial lidar, defined herein as the reference dataset. Given the small scale of the measured landform, the alignment and ensemble equivalence between data sources was addressed through postprocessing. The utilization of ground control points was a prerequisite to three-dimensional registration between datasets and improved the confidence in the morphology information generated. None of the methods were without limitation; however, careful attention to project preplanning and data nature will ultimately guide the temporal efficacy and practicality of management decisions.
ISSN:2196-6311
2196-632X