Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs

<p/> <p>The spectral radius <inline-formula> <graphic file="1029-242X-2009-852406-i2.gif"/></inline-formula> of a graph <inline-formula> <graphic file="1029-242X-2009-852406-i3.gif"/></inline-formula> is the largest eigenvalue of it...

Full description

Bibliographic Details
Main Author: Fang Kun-Fu
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2009/852406
id doaj-8fad85911b33400483daa85b829e7982
record_format Article
spelling doaj-8fad85911b33400483daa85b829e79822020-11-25T00:09:33ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2009-01-0120091852406Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free GraphsFang Kun-Fu<p/> <p>The spectral radius <inline-formula> <graphic file="1029-242X-2009-852406-i2.gif"/></inline-formula> of a graph <inline-formula> <graphic file="1029-242X-2009-852406-i3.gif"/></inline-formula> is the largest eigenvalue of its adjacency matrix. Let <inline-formula> <graphic file="1029-242X-2009-852406-i4.gif"/></inline-formula> be the smallest eigenvalue of <inline-formula> <graphic file="1029-242X-2009-852406-i5.gif"/></inline-formula>. In this paper, we have described the <inline-formula> <graphic file="1029-242X-2009-852406-i6.gif"/></inline-formula>-minor free graphs and showed that (A) let <inline-formula> <graphic file="1029-242X-2009-852406-i7.gif"/></inline-formula> be a simple graph with order <inline-formula> <graphic file="1029-242X-2009-852406-i8.gif"/></inline-formula>. If <inline-formula> <graphic file="1029-242X-2009-852406-i9.gif"/></inline-formula> has no <inline-formula> <graphic file="1029-242X-2009-852406-i10.gif"/></inline-formula>-minor, then <inline-formula> <graphic file="1029-242X-2009-852406-i11.gif"/></inline-formula>. (B) Let <inline-formula> <graphic file="1029-242X-2009-852406-i12.gif"/></inline-formula> be a simple connected graph with order <inline-formula> <graphic file="1029-242X-2009-852406-i13.gif"/></inline-formula>. If <inline-formula> <graphic file="1029-242X-2009-852406-i14.gif"/></inline-formula> has no <inline-formula> <graphic file="1029-242X-2009-852406-i15.gif"/></inline-formula>-minor, then <inline-formula> <graphic file="1029-242X-2009-852406-i16.gif"/></inline-formula>, where equality holds if and only if <inline-formula> <graphic file="1029-242X-2009-852406-i17.gif"/></inline-formula> is isomorphic to <inline-formula> <graphic file="1029-242X-2009-852406-i18.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2009/852406
collection DOAJ
language English
format Article
sources DOAJ
author Fang Kun-Fu
spellingShingle Fang Kun-Fu
Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs
Journal of Inequalities and Applications
author_facet Fang Kun-Fu
author_sort Fang Kun-Fu
title Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs
title_short Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs
title_full Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs
title_fullStr Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs
title_full_unstemmed Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs
title_sort bounds of eigenvalues of <inline-formula> <graphic file="1029-242x-2009-852406-i1.gif"/></inline-formula>-minor free graphs
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2009-01-01
description <p/> <p>The spectral radius <inline-formula> <graphic file="1029-242X-2009-852406-i2.gif"/></inline-formula> of a graph <inline-formula> <graphic file="1029-242X-2009-852406-i3.gif"/></inline-formula> is the largest eigenvalue of its adjacency matrix. Let <inline-formula> <graphic file="1029-242X-2009-852406-i4.gif"/></inline-formula> be the smallest eigenvalue of <inline-formula> <graphic file="1029-242X-2009-852406-i5.gif"/></inline-formula>. In this paper, we have described the <inline-formula> <graphic file="1029-242X-2009-852406-i6.gif"/></inline-formula>-minor free graphs and showed that (A) let <inline-formula> <graphic file="1029-242X-2009-852406-i7.gif"/></inline-formula> be a simple graph with order <inline-formula> <graphic file="1029-242X-2009-852406-i8.gif"/></inline-formula>. If <inline-formula> <graphic file="1029-242X-2009-852406-i9.gif"/></inline-formula> has no <inline-formula> <graphic file="1029-242X-2009-852406-i10.gif"/></inline-formula>-minor, then <inline-formula> <graphic file="1029-242X-2009-852406-i11.gif"/></inline-formula>. (B) Let <inline-formula> <graphic file="1029-242X-2009-852406-i12.gif"/></inline-formula> be a simple connected graph with order <inline-formula> <graphic file="1029-242X-2009-852406-i13.gif"/></inline-formula>. If <inline-formula> <graphic file="1029-242X-2009-852406-i14.gif"/></inline-formula> has no <inline-formula> <graphic file="1029-242X-2009-852406-i15.gif"/></inline-formula>-minor, then <inline-formula> <graphic file="1029-242X-2009-852406-i16.gif"/></inline-formula>, where equality holds if and only if <inline-formula> <graphic file="1029-242X-2009-852406-i17.gif"/></inline-formula> is isomorphic to <inline-formula> <graphic file="1029-242X-2009-852406-i18.gif"/></inline-formula>.</p>
url http://www.journalofinequalitiesandapplications.com/content/2009/852406
work_keys_str_mv AT fangkunfu boundsofeigenvaluesofinlineformulagraphicfile1029242x2009852406i1gifinlineformulaminorfreegraphs
_version_ 1725411350055747584