Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs
<p/> <p>The spectral radius <inline-formula> <graphic file="1029-242X-2009-852406-i2.gif"/></inline-formula> of a graph <inline-formula> <graphic file="1029-242X-2009-852406-i3.gif"/></inline-formula> is the largest eigenvalue of it...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2009/852406 |
id |
doaj-8fad85911b33400483daa85b829e7982 |
---|---|
record_format |
Article |
spelling |
doaj-8fad85911b33400483daa85b829e79822020-11-25T00:09:33ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2009-01-0120091852406Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free GraphsFang Kun-Fu<p/> <p>The spectral radius <inline-formula> <graphic file="1029-242X-2009-852406-i2.gif"/></inline-formula> of a graph <inline-formula> <graphic file="1029-242X-2009-852406-i3.gif"/></inline-formula> is the largest eigenvalue of its adjacency matrix. Let <inline-formula> <graphic file="1029-242X-2009-852406-i4.gif"/></inline-formula> be the smallest eigenvalue of <inline-formula> <graphic file="1029-242X-2009-852406-i5.gif"/></inline-formula>. In this paper, we have described the <inline-formula> <graphic file="1029-242X-2009-852406-i6.gif"/></inline-formula>-minor free graphs and showed that (A) let <inline-formula> <graphic file="1029-242X-2009-852406-i7.gif"/></inline-formula> be a simple graph with order <inline-formula> <graphic file="1029-242X-2009-852406-i8.gif"/></inline-formula>. If <inline-formula> <graphic file="1029-242X-2009-852406-i9.gif"/></inline-formula> has no <inline-formula> <graphic file="1029-242X-2009-852406-i10.gif"/></inline-formula>-minor, then <inline-formula> <graphic file="1029-242X-2009-852406-i11.gif"/></inline-formula>. (B) Let <inline-formula> <graphic file="1029-242X-2009-852406-i12.gif"/></inline-formula> be a simple connected graph with order <inline-formula> <graphic file="1029-242X-2009-852406-i13.gif"/></inline-formula>. If <inline-formula> <graphic file="1029-242X-2009-852406-i14.gif"/></inline-formula> has no <inline-formula> <graphic file="1029-242X-2009-852406-i15.gif"/></inline-formula>-minor, then <inline-formula> <graphic file="1029-242X-2009-852406-i16.gif"/></inline-formula>, where equality holds if and only if <inline-formula> <graphic file="1029-242X-2009-852406-i17.gif"/></inline-formula> is isomorphic to <inline-formula> <graphic file="1029-242X-2009-852406-i18.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2009/852406 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fang Kun-Fu |
spellingShingle |
Fang Kun-Fu Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs Journal of Inequalities and Applications |
author_facet |
Fang Kun-Fu |
author_sort |
Fang Kun-Fu |
title |
Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs |
title_short |
Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs |
title_full |
Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs |
title_fullStr |
Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs |
title_full_unstemmed |
Bounds of Eigenvalues of <inline-formula> <graphic file="1029-242X-2009-852406-i1.gif"/></inline-formula>-Minor Free Graphs |
title_sort |
bounds of eigenvalues of <inline-formula> <graphic file="1029-242x-2009-852406-i1.gif"/></inline-formula>-minor free graphs |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2009-01-01 |
description |
<p/> <p>The spectral radius <inline-formula> <graphic file="1029-242X-2009-852406-i2.gif"/></inline-formula> of a graph <inline-formula> <graphic file="1029-242X-2009-852406-i3.gif"/></inline-formula> is the largest eigenvalue of its adjacency matrix. Let <inline-formula> <graphic file="1029-242X-2009-852406-i4.gif"/></inline-formula> be the smallest eigenvalue of <inline-formula> <graphic file="1029-242X-2009-852406-i5.gif"/></inline-formula>. In this paper, we have described the <inline-formula> <graphic file="1029-242X-2009-852406-i6.gif"/></inline-formula>-minor free graphs and showed that (A) let <inline-formula> <graphic file="1029-242X-2009-852406-i7.gif"/></inline-formula> be a simple graph with order <inline-formula> <graphic file="1029-242X-2009-852406-i8.gif"/></inline-formula>. If <inline-formula> <graphic file="1029-242X-2009-852406-i9.gif"/></inline-formula> has no <inline-formula> <graphic file="1029-242X-2009-852406-i10.gif"/></inline-formula>-minor, then <inline-formula> <graphic file="1029-242X-2009-852406-i11.gif"/></inline-formula>. (B) Let <inline-formula> <graphic file="1029-242X-2009-852406-i12.gif"/></inline-formula> be a simple connected graph with order <inline-formula> <graphic file="1029-242X-2009-852406-i13.gif"/></inline-formula>. If <inline-formula> <graphic file="1029-242X-2009-852406-i14.gif"/></inline-formula> has no <inline-formula> <graphic file="1029-242X-2009-852406-i15.gif"/></inline-formula>-minor, then <inline-formula> <graphic file="1029-242X-2009-852406-i16.gif"/></inline-formula>, where equality holds if and only if <inline-formula> <graphic file="1029-242X-2009-852406-i17.gif"/></inline-formula> is isomorphic to <inline-formula> <graphic file="1029-242X-2009-852406-i18.gif"/></inline-formula>.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2009/852406 |
work_keys_str_mv |
AT fangkunfu boundsofeigenvaluesofinlineformulagraphicfile1029242x2009852406i1gifinlineformulaminorfreegraphs |
_version_ |
1725411350055747584 |