Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques

The GNSS LABoratory tool (gLAB) is an interactive educational suite of applications for processing data from the Global Navigation Satellite System (GNSS). gLAB is composed of several data analysis modules that compute the <i>solution</i> of the problem of determining a position by means...

Full description

Bibliographic Details
Main Authors: Maria Teresa Alonso, Carlo Ferigato, Deimos Ibanez Segura, Domenico Perrotta, Adria Rovira-Garcia, Emmanuele Sordini
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Stats
Subjects:
Online Access:https://www.mdpi.com/2571-905X/4/2/26
id doaj-8fa498a79740472691630535dd0a10a8
record_format Article
spelling doaj-8fa498a79740472691630535dd0a10a82021-06-01T00:55:43ZengMDPI AGStats2571-905X2021-05-0142640041810.3390/stats4020026Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical TechniquesMaria Teresa Alonso0Carlo Ferigato1Deimos Ibanez Segura2Domenico Perrotta3Adria Rovira-Garcia4Emmanuele Sordini5Research Group of Astronomy and GEomatics (gAGE), Universitat Politecnica de Catalunya—UPC, C/. Jordi Girona 1-3, Campus Nord, 08034 Barcelona, SpainEuropean Commission, Joint Research Centre—JRC, via Enrico Fermi, 2749 21027 Ispra, ItalyResearch Group of Astronomy and GEomatics (gAGE), Universitat Politecnica de Catalunya—UPC, C/. Jordi Girona 1-3, Campus Nord, 08034 Barcelona, SpainEuropean Commission, Joint Research Centre—JRC, via Enrico Fermi, 2749 21027 Ispra, ItalyResearch Group of Astronomy and GEomatics (gAGE), Universitat Politecnica de Catalunya—UPC, C/. Jordi Girona 1-3, Campus Nord, 08034 Barcelona, SpainEuropean Commission, Joint Research Centre—JRC, via Enrico Fermi, 2749 21027 Ispra, ItalyThe GNSS LABoratory tool (gLAB) is an interactive educational suite of applications for processing data from the Global Navigation Satellite System (GNSS). gLAB is composed of several data analysis modules that compute the <i>solution</i> of the problem of determining a position by means of GNSS measurements. The present work aimed to improve the <i>pre-fit outlier detection</i> function of gLAB since <i>outliers</i>, if undetected, deteriorate the obtained position coordinates. The methodology exploits <i>robust statistical tools</i> for regression provided by the Flexible Statistics and Data Analysis (FSDA) toolbox, an extension of MATLAB for the analysis of complex datasets. Our results show how the robust analysis FSDA technique improves the capability of detecting actual outliers in GNSS measurements, with respect to the present gLAB <i>pre-fit outlier detection</i> function. This study concludes that robust statistical analysis techniques, when applied to the <i>pre-fit</i> layer of gLAB, improve the overall reliability and accuracy of the positioning solution.https://www.mdpi.com/2571-905X/4/2/26GNSS positioningrobust statisticsGNSS LABoratory—gLABFlexible Statistics and Data Analysis toolbox—FSDA
collection DOAJ
language English
format Article
sources DOAJ
author Maria Teresa Alonso
Carlo Ferigato
Deimos Ibanez Segura
Domenico Perrotta
Adria Rovira-Garcia
Emmanuele Sordini
spellingShingle Maria Teresa Alonso
Carlo Ferigato
Deimos Ibanez Segura
Domenico Perrotta
Adria Rovira-Garcia
Emmanuele Sordini
Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques
Stats
GNSS positioning
robust statistics
GNSS LABoratory—gLAB
Flexible Statistics and Data Analysis toolbox—FSDA
author_facet Maria Teresa Alonso
Carlo Ferigato
Deimos Ibanez Segura
Domenico Perrotta
Adria Rovira-Garcia
Emmanuele Sordini
author_sort Maria Teresa Alonso
title Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques
title_short Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques
title_full Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques
title_fullStr Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques
title_full_unstemmed Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques
title_sort analysis of ‘pre-fit’ datasets of glab by robust statistical techniques
publisher MDPI AG
series Stats
issn 2571-905X
publishDate 2021-05-01
description The GNSS LABoratory tool (gLAB) is an interactive educational suite of applications for processing data from the Global Navigation Satellite System (GNSS). gLAB is composed of several data analysis modules that compute the <i>solution</i> of the problem of determining a position by means of GNSS measurements. The present work aimed to improve the <i>pre-fit outlier detection</i> function of gLAB since <i>outliers</i>, if undetected, deteriorate the obtained position coordinates. The methodology exploits <i>robust statistical tools</i> for regression provided by the Flexible Statistics and Data Analysis (FSDA) toolbox, an extension of MATLAB for the analysis of complex datasets. Our results show how the robust analysis FSDA technique improves the capability of detecting actual outliers in GNSS measurements, with respect to the present gLAB <i>pre-fit outlier detection</i> function. This study concludes that robust statistical analysis techniques, when applied to the <i>pre-fit</i> layer of gLAB, improve the overall reliability and accuracy of the positioning solution.
topic GNSS positioning
robust statistics
GNSS LABoratory—gLAB
Flexible Statistics and Data Analysis toolbox—FSDA
url https://www.mdpi.com/2571-905X/4/2/26
work_keys_str_mv AT mariateresaalonso analysisofprefitdatasetsofglabbyrobuststatisticaltechniques
AT carloferigato analysisofprefitdatasetsofglabbyrobuststatisticaltechniques
AT deimosibanezsegura analysisofprefitdatasetsofglabbyrobuststatisticaltechniques
AT domenicoperrotta analysisofprefitdatasetsofglabbyrobuststatisticaltechniques
AT adriaroviragarcia analysisofprefitdatasetsofglabbyrobuststatisticaltechniques
AT emmanuelesordini analysisofprefitdatasetsofglabbyrobuststatisticaltechniques
_version_ 1721413534924931072