Hybrid Modeling Method for a DEP Based Particle Manipulation
In this paper, a new modeling approach for Dielectrophoresis (DEP) based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a mo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2013-01-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/13/2/1730 |
Summary: | In this paper, a new modeling approach for Dielectrophoresis (DEP) based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results. |
---|---|
ISSN: | 1424-8220 |