Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains

This work is devoted to some class of parabolic equations of high order with double nonlinearity which can be represented by a model equation ∂∂t(|u|k−2u)=∑α=1n(−1)mα−1∂mα∂xmαα[∣∣∣∂mαu∂xmαα∣∣∣pα−2∂mαu∂xmαα],m1,…,mn∈N,pn≥…≥p1>k,k>1. For the solution of the first mixed problem in a cylindric...

Full description

Bibliographic Details
Main Authors: A. A. Leont'ev, L. M. Kozhevnikova
Format: Article
Language:English
Published: Samara State Technical University 2013-03-01
Series:Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
Online Access:http://mi.mathnet.ru/eng/vsgtu1186
id doaj-8f8f802b7c8c4f789e03e459e6e6f738
record_format Article
spelling doaj-8f8f802b7c8c4f789e03e459e6e6f7382020-11-25T01:41:18ZengSamara State Technical UniversityVestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki1991-86152310-70812013-03-011(30)828910.14498/vsgtu1186 Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains A. A. Leont'evL. M. KozhevnikovaThis work is devoted to some class of parabolic equations of high order with double nonlinearity which can be represented by a model equation ∂∂t(|u|k−2u)=∑α=1n(−1)mα−1∂mα∂xmαα[∣∣∣∂mαu∂xmαα∣∣∣pα−2∂mαu∂xmαα],m1,…,mn∈N,pn≥…≥p1>k,k>1. For the solution of the first mixed problem in a cylindrical domain D=(0,∞) ×Ω,Ω⊂Rn, n≥2, with homogeneous Dirichlet boundary condition and finite initial function the highest rate of decay established as t→∞. Earlier upper estimates were obtained by the authors for anisotropic equation of the second order and prove their accuracy.http://mi.mathnet.ru/eng/vsgtu1186
collection DOAJ
language English
format Article
sources DOAJ
author A. A. Leont'ev
L. M. Kozhevnikova
spellingShingle A. A. Leont'ev
L. M. Kozhevnikova
Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
author_facet A. A. Leont'ev
L. M. Kozhevnikova
author_sort A. A. Leont'ev
title Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
title_short Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
title_full Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
title_fullStr Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
title_full_unstemmed Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
title_sort solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
publisher Samara State Technical University
series Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
issn 1991-8615
2310-7081
publishDate 2013-03-01
description This work is devoted to some class of parabolic equations of high order with double nonlinearity which can be represented by a model equation ∂∂t(|u|k−2u)=∑α=1n(−1)mα−1∂mα∂xmαα[∣∣∣∂mαu∂xmαα∣∣∣pα−2∂mαu∂xmαα],m1,…,mn∈N,pn≥…≥p1>k,k>1. For the solution of the first mixed problem in a cylindrical domain D=(0,∞) ×Ω,Ω⊂Rn, n≥2, with homogeneous Dirichlet boundary condition and finite initial function the highest rate of decay established as t→∞. Earlier upper estimates were obtained by the authors for anisotropic equation of the second order and prove their accuracy.
url http://mi.mathnet.ru/eng/vsgtu1186
work_keys_str_mv AT aaleontev solutionsofanisotropicparabolicequationswithdoublenonlinearityinunboundeddomains
AT lmkozhevnikova solutionsofanisotropicparabolicequationswithdoublenonlinearityinunboundeddomains
_version_ 1725041539096248320