Machine learning and individual variability in electric field characteristics predict tDCS treatment response

Background: Transcranial direct current stimulation (tDCS) is widely investigated as a therapeutic tool to enhance cognitive function in older adults with and without neurodegenerative disease. Prior research demonstrates that electric current delivery to the brain can vary significantly across indi...

Full description

Bibliographic Details
Main Authors: Alejandro Albizu, Ruogu Fang, Aprinda Indahlastari, Andrew O’Shea, Skylar E. Stolte, Kyle B. See, Emanuel M. Boutzoukas, Jessica N. Kraft, Nicole R. Nissim, Adam J. Woods
Format: Article
Language:English
Published: Elsevier 2020-11-01
Series:Brain Stimulation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1935861X20302680
Description
Summary:Background: Transcranial direct current stimulation (tDCS) is widely investigated as a therapeutic tool to enhance cognitive function in older adults with and without neurodegenerative disease. Prior research demonstrates that electric current delivery to the brain can vary significantly across individuals. Quantification of this variability could enable person-specific optimization of tDCS outcomes. This pilot study used machine learning and MRI-derived electric field models to predict working memory improvements as a proof of concept for precision cognitive intervention. Methods: Fourteen healthy older adults received 20 minutes of 2 mA tDCS stimulation (F3/F4) during a two-week cognitive training intervention. Participants performed an N-back working memory task pre-/post-intervention. MRI-derived current models were passed through a linear Support Vector Machine (SVM) learning algorithm to characterize crucial tDCS current components (intensity and direction) that induced working memory improvements in tDCS responders versus non-responders. Main results: SVM models of tDCS current components had 86% overall accuracy in classifying treatment responders vs. non-responders, with current intensity producing the best overall model differentiating changes in working memory performance. Median current intensity and direction in brain regions near the electrodes were positively related to intervention responses (r=0.811,p<0.001 and r=0.774,p=0.001). Conclusions: This study provides the first evidence that pattern recognition analyses of MRI-derived tDCS current models can provide individual prognostic classification of tDCS treatment response with 86% accuracy. Individual differences in current intensity and direction play important roles in determining treatment response to tDCS. These findings provide important insights into mechanisms of tDCS response as well as proof of concept for future precision dosing models of tDCS intervention.
ISSN:1935-861X