Level crossings and turning points of random hyperbolic polynomials
In this paper, we show that the asymptotic estimate for the expected number of K-level crossings of a random hyperbolic polynomial a1sinhx+a2sinh2x+⋯+ansinhnx, where aj(j=1,2,…,n) are independent normally distributed random variables with mean zero and variance one, is (1/π)logn. This result is true...
Main Authors: | K. Farahmand, P. Hannigan |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1999-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171299225793 |
Similar Items
-
On real zeros of random polynomials with hyperbolic elements
by: K. Farahmand, et al.
Published: (1998-01-01) -
Mean number of real zeros of a random hyperbolic polynomial
by: J. Ernest Wilkins
Published: (2000-01-01) -
Integral estocástica e aplicações
by: Fabio Niski
Published: (2009) -
Integral estocástica e aplicações
by: Niski, Fabio
Published: (2009) -
Analyse des modèles particulaires de Feynman-Kac et application à la résolution de problèmes inverses en électromagnétisme
by: Giraud, François
Published: (2013)