Kinetic Stability of Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub> Isomer with a Planar Tetracoordinate Carbon Atom

Dissociation pathways of the global minimum geometry of Si<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>C<inline-formula><math displa...

Full description

Bibliographic Details
Main Authors: Krishnan Thirumoorthy, Vijayanand Chandrasekaran, Andrew L. Cooksy, Venkatesan S. Thimmakondu
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Chemistry
Subjects:
Online Access:https://www.mdpi.com/2624-8549/3/1/2
id doaj-8f62e157419a4a3ba4b2626aec28d5e8
record_format Article
spelling doaj-8f62e157419a4a3ba4b2626aec28d5e82021-01-01T00:02:45ZengMDPI AGChemistry2624-85492021-12-0132132710.3390/chemistry3010002Kinetic Stability of Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub> Isomer with a Planar Tetracoordinate Carbon AtomKrishnan Thirumoorthy0Vijayanand Chandrasekaran1Andrew L. Cooksy2Venkatesan S. Thimmakondu3School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, IndiaSchool of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, IndiaDepartment of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USADepartment of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USADissociation pathways of the global minimum geometry of Si<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>C<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>5</mn></msub></semantics></math></inline-formula>H<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> with a planar tetracoordinate carbon (ptC) atom, 2,7-disilatricyclo[4.1.0.0<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>]hept-2,4,6-trien-2,7-diyl (<b>1</b>), have been theoretically investigated using density functional theory and coupled-cluster (CC) methods. Dissociation of Si-C bond connected to the ptC atom leads to the formation of 4,7-disilabicyclo[4.1.0]hept-1(6),4(5)-dien-2-yn-7-ylidene (<b>4</b>) through a single transition state. Dissociation of C-C bond connected to the ptC atom leads to an intermediate with two identical transition states and leads back to <b>1</b> itself. Simultaneous breaking of both Si-C and C-C bonds leads to an acyclic transition state, which forms an acyclic product, cis-1,7-disilahept-1,2,3,5,6-pentaen-1,7-diylidene (<b>19</b>). Overall, two different products, four transition states, and an intermediate have been identified at the B3LYP/6-311++G(2d,2p) level of theory. Intrinsic reaction coordinate calculations have also been done at the latter level to confirm the isomerization pathways. CC calculations have been done at the CCSD(T)/cc-pVTZ level of theory for all minima. Importantly, all reaction profiles for <b>1</b> are found be endothermic in Si<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>C<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>5</mn></msub></semantics></math></inline-formula>H<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>. These results are in stark contrast compared to the structurally similar and isovalent lowest-energy isomer of C<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>H<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> with a ptC atom as the overall reaction profiles there have been found to be exothermic. The activation energies for Si-C, C-C, and Si-C/C-C breaking are found to be 30.51, 64.05, and 61.85 kcal mol<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, respectively. Thus, it is emphasized here that <b>1</b> is a kinetically stable molecule. However, it remains elusive in the laboratory to date. Therefore, energetic and spectroscopic parameters have been documented here, which may be of relevance to molecular spectroscopists in identifying this key <i>anti-van’t-Hoff-Le Bel</i> molecule.https://www.mdpi.com/2624-8549/3/1/2Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub>planar tetracoordinate carbonkinetic stabilitydissociation pathwaysab initio calculations
collection DOAJ
language English
format Article
sources DOAJ
author Krishnan Thirumoorthy
Vijayanand Chandrasekaran
Andrew L. Cooksy
Venkatesan S. Thimmakondu
spellingShingle Krishnan Thirumoorthy
Vijayanand Chandrasekaran
Andrew L. Cooksy
Venkatesan S. Thimmakondu
Kinetic Stability of Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub> Isomer with a Planar Tetracoordinate Carbon Atom
Chemistry
Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub>
planar tetracoordinate carbon
kinetic stability
dissociation pathways
ab initio calculations
author_facet Krishnan Thirumoorthy
Vijayanand Chandrasekaran
Andrew L. Cooksy
Venkatesan S. Thimmakondu
author_sort Krishnan Thirumoorthy
title Kinetic Stability of Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub> Isomer with a Planar Tetracoordinate Carbon Atom
title_short Kinetic Stability of Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub> Isomer with a Planar Tetracoordinate Carbon Atom
title_full Kinetic Stability of Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub> Isomer with a Planar Tetracoordinate Carbon Atom
title_fullStr Kinetic Stability of Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub> Isomer with a Planar Tetracoordinate Carbon Atom
title_full_unstemmed Kinetic Stability of Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub> Isomer with a Planar Tetracoordinate Carbon Atom
title_sort kinetic stability of si<sub>2</sub>c<sub>5</sub>h<sub>2</sub> isomer with a planar tetracoordinate carbon atom
publisher MDPI AG
series Chemistry
issn 2624-8549
publishDate 2021-12-01
description Dissociation pathways of the global minimum geometry of Si<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>C<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>5</mn></msub></semantics></math></inline-formula>H<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> with a planar tetracoordinate carbon (ptC) atom, 2,7-disilatricyclo[4.1.0.0<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>]hept-2,4,6-trien-2,7-diyl (<b>1</b>), have been theoretically investigated using density functional theory and coupled-cluster (CC) methods. Dissociation of Si-C bond connected to the ptC atom leads to the formation of 4,7-disilabicyclo[4.1.0]hept-1(6),4(5)-dien-2-yn-7-ylidene (<b>4</b>) through a single transition state. Dissociation of C-C bond connected to the ptC atom leads to an intermediate with two identical transition states and leads back to <b>1</b> itself. Simultaneous breaking of both Si-C and C-C bonds leads to an acyclic transition state, which forms an acyclic product, cis-1,7-disilahept-1,2,3,5,6-pentaen-1,7-diylidene (<b>19</b>). Overall, two different products, four transition states, and an intermediate have been identified at the B3LYP/6-311++G(2d,2p) level of theory. Intrinsic reaction coordinate calculations have also been done at the latter level to confirm the isomerization pathways. CC calculations have been done at the CCSD(T)/cc-pVTZ level of theory for all minima. Importantly, all reaction profiles for <b>1</b> are found be endothermic in Si<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>C<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>5</mn></msub></semantics></math></inline-formula>H<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>. These results are in stark contrast compared to the structurally similar and isovalent lowest-energy isomer of C<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>7</mn></msub></semantics></math></inline-formula>H<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> with a ptC atom as the overall reaction profiles there have been found to be exothermic. The activation energies for Si-C, C-C, and Si-C/C-C breaking are found to be 30.51, 64.05, and 61.85 kcal mol<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, respectively. Thus, it is emphasized here that <b>1</b> is a kinetically stable molecule. However, it remains elusive in the laboratory to date. Therefore, energetic and spectroscopic parameters have been documented here, which may be of relevance to molecular spectroscopists in identifying this key <i>anti-van’t-Hoff-Le Bel</i> molecule.
topic Si<sub>2</sub>C<sub>5</sub>H<sub>2</sub>
planar tetracoordinate carbon
kinetic stability
dissociation pathways
ab initio calculations
url https://www.mdpi.com/2624-8549/3/1/2
work_keys_str_mv AT krishnanthirumoorthy kineticstabilityofsisub2subcsub5subhsub2subisomerwithaplanartetracoordinatecarbonatom
AT vijayanandchandrasekaran kineticstabilityofsisub2subcsub5subhsub2subisomerwithaplanartetracoordinatecarbonatom
AT andrewlcooksy kineticstabilityofsisub2subcsub5subhsub2subisomerwithaplanartetracoordinatecarbonatom
AT venkatesansthimmakondu kineticstabilityofsisub2subcsub5subhsub2subisomerwithaplanartetracoordinatecarbonatom
_version_ 1724364563826081792