Cross-Ratio in Real Vector Space

Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]).

Bibliographic Details
Main Author: Coghetto Roland
Format: Article
Language:English
Published: Sciendo 2019-04-01
Series:Formalized Mathematics
Subjects:
Online Access:https://doi.org/10.2478/forma-2019-0005
id doaj-8f5e88a1ba084fca88f2870c9bdb96bf
record_format Article
spelling doaj-8f5e88a1ba084fca88f2870c9bdb96bf2021-09-05T21:01:04ZengSciendoFormalized Mathematics1426-26301898-99342019-04-01271476010.2478/forma-2019-0005Cross-Ratio in Real Vector SpaceCoghetto Roland0Rue de la Brasserie 5, 7100La Louvière, BelgiumUsing Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]).https://doi.org/10.2478/forma-2019-0005affine ratiocross-ratioreal vector spacegeometry15a0351a0568t9903b35
collection DOAJ
language English
format Article
sources DOAJ
author Coghetto Roland
spellingShingle Coghetto Roland
Cross-Ratio in Real Vector Space
Formalized Mathematics
affine ratio
cross-ratio
real vector space
geometry
15a03
51a05
68t99
03b35
author_facet Coghetto Roland
author_sort Coghetto Roland
title Cross-Ratio in Real Vector Space
title_short Cross-Ratio in Real Vector Space
title_full Cross-Ratio in Real Vector Space
title_fullStr Cross-Ratio in Real Vector Space
title_full_unstemmed Cross-Ratio in Real Vector Space
title_sort cross-ratio in real vector space
publisher Sciendo
series Formalized Mathematics
issn 1426-2630
1898-9934
publishDate 2019-04-01
description Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]).
topic affine ratio
cross-ratio
real vector space
geometry
15a03
51a05
68t99
03b35
url https://doi.org/10.2478/forma-2019-0005
work_keys_str_mv AT coghettoroland crossratioinrealvectorspace
_version_ 1717781732562829312