Schrödinger equations in noncylindrical domains: exact controllability

We consider an open bounded set Ω⊂ℝn and a family {K(t)}t≥0 of orthogonal matrices of ℝn. Set Ωt={x∈ℝn;x=K(t)y,for all y∈Ω}, whose boundary is Γt. We denote by Q^ the noncylindrical domain given by Q^=∪0<t<T{Ωt×{t}}, with the regular lateral boundary Σ^=∪0<t<T{Γt×{t}}. In this paper we i...

Full description

Bibliographic Details
Main Authors: G. O. Antunes, M. D. G. da Silva, R. F. Apolaya
Format: Article
Language:English
Published: Hindawi Limited 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/78192
id doaj-8f5c6db10da44ad5aeccf12128de53df
record_format Article
spelling doaj-8f5c6db10da44ad5aeccf12128de53df2020-11-24T23:22:35ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252006-01-01200610.1155/IJMMS/2006/7819278192Schrödinger equations in noncylindrical domains: exact controllabilityG. O. Antunes0M. D. G. da Silva1R. F. Apolaya2Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-900, BrazilInstituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, BrazilInstituto de Matemática, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Niterói, BrazilWe consider an open bounded set Ω⊂ℝn and a family {K(t)}t≥0 of orthogonal matrices of ℝn. Set Ωt={x∈ℝn;x=K(t)y,for all y∈Ω}, whose boundary is Γt. We denote by Q^ the noncylindrical domain given by Q^=∪0<t<T{Ωt×{t}}, with the regular lateral boundary Σ^=∪0<t<T{Γt×{t}}. In this paper we investigate the boundary exact controllability for the linear Schrödinger equation u′−iΔu=f in Q^(i2=−1), u=w on Σ^, u(x,0)=u0(x) in Ω0, where w is the control.http://dx.doi.org/10.1155/IJMMS/2006/78192
collection DOAJ
language English
format Article
sources DOAJ
author G. O. Antunes
M. D. G. da Silva
R. F. Apolaya
spellingShingle G. O. Antunes
M. D. G. da Silva
R. F. Apolaya
Schrödinger equations in noncylindrical domains: exact controllability
International Journal of Mathematics and Mathematical Sciences
author_facet G. O. Antunes
M. D. G. da Silva
R. F. Apolaya
author_sort G. O. Antunes
title Schrödinger equations in noncylindrical domains: exact controllability
title_short Schrödinger equations in noncylindrical domains: exact controllability
title_full Schrödinger equations in noncylindrical domains: exact controllability
title_fullStr Schrödinger equations in noncylindrical domains: exact controllability
title_full_unstemmed Schrödinger equations in noncylindrical domains: exact controllability
title_sort schrödinger equations in noncylindrical domains: exact controllability
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2006-01-01
description We consider an open bounded set Ω⊂ℝn and a family {K(t)}t≥0 of orthogonal matrices of ℝn. Set Ωt={x∈ℝn;x=K(t)y,for all y∈Ω}, whose boundary is Γt. We denote by Q^ the noncylindrical domain given by Q^=∪0<t<T{Ωt×{t}}, with the regular lateral boundary Σ^=∪0<t<T{Γt×{t}}. In this paper we investigate the boundary exact controllability for the linear Schrödinger equation u′−iΔu=f in Q^(i2=−1), u=w on Σ^, u(x,0)=u0(x) in Ω0, where w is the control.
url http://dx.doi.org/10.1155/IJMMS/2006/78192
work_keys_str_mv AT goantunes schrodingerequationsinnoncylindricaldomainsexactcontrollability
AT mdgdasilva schrodingerequationsinnoncylindricaldomainsexactcontrollability
AT rfapolaya schrodingerequationsinnoncylindricaldomainsexactcontrollability
_version_ 1725567348206731264