Evaluating the Small Population Paradigm for Rare Large-Bodied Woodpeckers, with Implications for the Ivory-billed Woodpecker
Six large-bodied, ≥ 120 g, woodpecker species are listed as near-threatened to critically endangered by the International Union for Conservation of Nature (IUCN). The small population paradigm assumes that these populations are likely to become extinct without an increase in numbers, but the combine...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Resilience Alliance
2008-12-01
|
Series: | Avian Conservation and Ecology |
Subjects: | |
Online Access: | http://www.ace-eco.org/vol3/iss2/art5/ |
id |
doaj-8f245fa0c3044632ad7c87fdd9e7ee38 |
---|---|
record_format |
Article |
spelling |
doaj-8f245fa0c3044632ad7c87fdd9e7ee382020-11-24T21:23:51ZengResilience AllianceAvian Conservation and Ecology1712-65682008-12-0132510.5751/ACE-00255-030205255Evaluating the Small Population Paradigm for Rare Large-Bodied Woodpeckers, with Implications for the Ivory-billed WoodpeckerBrady J. Mattsson0Rua S. Mordecai1Michael J. Conroy2James T. Peterson3Robert J. Cooper4Hans Christensen5Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602Tved 107 C, DK-6270 Tønder, DenmarkSix large-bodied, ≥ 120 g, woodpecker species are listed as near-threatened to critically endangered by the International Union for Conservation of Nature (IUCN). The small population paradigm assumes that these populations are likely to become extinct without an increase in numbers, but the combined influences of initial population size and demographic rates, i.e., annual adult survival and fecundity, may drive population persistence for these species. We applied a stochastic, stage-based single-population model to available demographic rates for Dryocopus and Campephilus woodpeckers. In particular, we determined the change in predicted extinction rate, i.e., proportion of simulated populations that went extinct within 100 yr, to concomitant changes in six input parameters. To our knowledge, this is the first study to evaluate the combined importance of initial population size and demographic rates for the persistence of large-bodied woodpeckers. Under a worse-case scenario, the median time to extinction was 7 yr (range: 1-32). Across the combinations of other input values, increasing initial population size by one female induced, on average, 0.4%-3.2% (range: 0%-28%) reduction in extinction rate. Increasing initial population size from 5-30 resulted in extinction rates < 0.05 under limited conditions: (1) all input values were intermediate, or (2) Allee effect present and annual adult survival ≥ 0.8. Based on our model, these species can persist as rare, as few as five females, and thus difficult-to-detect, populations provided they maintain ≥ 1.1 recruited females annually per adult female and an annual adult survival rate ≥ 0.8. Athough a demographic-based population viability analysis (PVA) is useful to predict how extinction rate changes across scenarios for life-history attributes, the next step for modeling these populations should incorporate more easily acquired data on changes in patch occupancy to make predictions about patch colonization and extinction rates.http://www.ace-eco.org/vol3/iss2/art5/Allee effect</span>Campephilus principalisDryocopus<span class="proof_keywords"> endangered speciesmultiple-variable perturbation analysisstage-based model. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Brady J. Mattsson Rua S. Mordecai Michael J. Conroy James T. Peterson Robert J. Cooper Hans Christensen |
spellingShingle |
Brady J. Mattsson Rua S. Mordecai Michael J. Conroy James T. Peterson Robert J. Cooper Hans Christensen Evaluating the Small Population Paradigm for Rare Large-Bodied Woodpeckers, with Implications for the Ivory-billed Woodpecker Avian Conservation and Ecology Allee effect </span>Campephilus principalis Dryocopus <span class="proof_keywords"> endangered species multiple-variable perturbation analysis stage-based model. |
author_facet |
Brady J. Mattsson Rua S. Mordecai Michael J. Conroy James T. Peterson Robert J. Cooper Hans Christensen |
author_sort |
Brady J. Mattsson |
title |
Evaluating the Small Population Paradigm for Rare Large-Bodied Woodpeckers, with Implications for the Ivory-billed Woodpecker |
title_short |
Evaluating the Small Population Paradigm for Rare Large-Bodied Woodpeckers, with Implications for the Ivory-billed Woodpecker |
title_full |
Evaluating the Small Population Paradigm for Rare Large-Bodied Woodpeckers, with Implications for the Ivory-billed Woodpecker |
title_fullStr |
Evaluating the Small Population Paradigm for Rare Large-Bodied Woodpeckers, with Implications for the Ivory-billed Woodpecker |
title_full_unstemmed |
Evaluating the Small Population Paradigm for Rare Large-Bodied Woodpeckers, with Implications for the Ivory-billed Woodpecker |
title_sort |
evaluating the small population paradigm for rare large-bodied woodpeckers, with implications for the ivory-billed woodpecker |
publisher |
Resilience Alliance |
series |
Avian Conservation and Ecology |
issn |
1712-6568 |
publishDate |
2008-12-01 |
description |
Six large-bodied, ≥ 120 g, woodpecker species are listed as near-threatened to critically endangered by the International Union for Conservation of Nature (IUCN). The small population paradigm assumes that these populations are likely to become extinct without an increase in numbers, but the combined influences of initial population size and demographic rates, i.e., annual adult survival and fecundity, may drive population persistence for these species. We applied a stochastic, stage-based single-population model to available demographic rates for Dryocopus and Campephilus woodpeckers. In particular, we determined the change in predicted extinction rate, i.e., proportion of simulated populations that went extinct within 100 yr, to concomitant changes in six input parameters. To our knowledge, this is the first study to evaluate the combined importance of initial population size and demographic rates for the persistence of large-bodied woodpeckers. Under a worse-case scenario, the median time to extinction was 7 yr (range: 1-32). Across the combinations of other input values, increasing initial population size by one female induced, on average, 0.4%-3.2% (range: 0%-28%) reduction in extinction rate. Increasing initial population size from 5-30 resulted in extinction rates < 0.05 under limited conditions: (1) all input values were intermediate, or (2) Allee effect present and annual adult survival ≥ 0.8. Based on our model, these species can persist as rare, as few as five females, and thus difficult-to-detect, populations provided they maintain ≥ 1.1 recruited females annually per adult female and an annual adult survival rate ≥ 0.8. Athough a demographic-based population viability analysis (PVA) is useful to predict how extinction rate changes across scenarios for life-history attributes, the next step for modeling these populations should incorporate more easily acquired data on changes in patch occupancy to make predictions about patch colonization and extinction rates. |
topic |
Allee effect </span>Campephilus principalis Dryocopus <span class="proof_keywords"> endangered species multiple-variable perturbation analysis stage-based model. |
url |
http://www.ace-eco.org/vol3/iss2/art5/ |
work_keys_str_mv |
AT bradyjmattsson evaluatingthesmallpopulationparadigmforrarelargebodiedwoodpeckerswithimplicationsfortheivorybilledwoodpecker AT ruasmordecai evaluatingthesmallpopulationparadigmforrarelargebodiedwoodpeckerswithimplicationsfortheivorybilledwoodpecker AT michaeljconroy evaluatingthesmallpopulationparadigmforrarelargebodiedwoodpeckerswithimplicationsfortheivorybilledwoodpecker AT jamestpeterson evaluatingthesmallpopulationparadigmforrarelargebodiedwoodpeckerswithimplicationsfortheivorybilledwoodpecker AT robertjcooper evaluatingthesmallpopulationparadigmforrarelargebodiedwoodpeckerswithimplicationsfortheivorybilledwoodpecker AT hanschristensen evaluatingthesmallpopulationparadigmforrarelargebodiedwoodpeckerswithimplicationsfortheivorybilledwoodpecker |
_version_ |
1716725002570563584 |