Геометрия риманова пространства второго приближения
Для риманова пространства ненулевой постоянной кривизны Vn построено приближение второго порядка - пространство V2n. Доказано, что V2n является субпроективным пространством В. Ф. Кагана. В явном виде получено выражение компонент вектора Киллинга пространства V2n....
Main Authors: | Сергей Михайлович Покась, Алина Витальевна Крутоголова |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Odessa National Academy of Food Technologies
2020-02-01
|
Series: | Pracì Mìžnarodnogo Geometričnogo Centru |
Subjects: | |
Online Access: | https://journals.onaft.edu.ua/index.php/geometry/article/view/1607 |
Similar Items
-
Infinitesimal conformai transformations in a Riemannian space of the second approximation
by: Сергей Михайлович Покась
Published: (2014-11-01) -
Квазигеодезические отображения рекуррентно-параболических пространств
by: Ирина Николаевна Курбатова, et al.
Published: (2015-09-01) -
Quasigeodesic mappings of parabolic Kähler spaces
by: Ирина Николаевна Курбатова
Published: (2014-11-01) -
Regularity of the canonical quasi-geodesic mappings of parabolic Kähler spaces
by: Ирина Николаевна Курбатова
Published: (2014-11-01) -
О 4-квазипланарных отображениях полукватернионных многообразий
by: Irina Kurbatova
Published: (2016-06-01)