Development of Binderless Fiberboards from Steam-exploded and Oxidized Oil Palm Wastes
Binderless fiberboards were made from oil palm (Elaeis guineensis) empty fruit bunches with two treatments: steam explosion and Fenton reagent oxidation. Fiberboards were prepared with a targeted density of 1.20 g/cm3 and a thickness of 4 mm. A factorial experimental design 22 with two center repeti...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2014-04-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_2_2922_Mejia_Binderless_Fiberboards_Oil_Palm_Wastes |
Summary: | Binderless fiberboards were made from oil palm (Elaeis guineensis) empty fruit bunches with two treatments: steam explosion and Fenton reagent oxidation. Fiberboards were prepared with a targeted density of 1.20 g/cm3 and a thickness of 4 mm. A factorial experimental design 22 with two center repetitions and one repetition was applied for each treatment. The oil palm waste was oxidized with Fenton reagent using a H2O2/Fe2+ ratio of 2%/0.2% to 4%/0.4% and a pressing temperature of 170 to 190 °C. Steam explosion was carried out at a severity factor of 3.5 to 4.0 at the same pressing temperature. Both treatments were examined under two major response variables: mechanical properties (modulus of rupture, MOR, and modulus of elasticity, MOE) and physical properties (thickness swelling, TS, and water absorption, WA). Steam-exploded samples developed better physico-mechanical properties than those that underwent Fenton reagent oxidation. The best results were obtained from fiberboards treated with the highest steam explosion design conditions (severity 4 and pressing temperature 190 °C) to give optimum values of MOE 3100.09 MPa, MOR 28.49 MPa, TS 11.80%, and WA 22.74%. Binderless fiberboards made from steam explosion-treated pulp satisfied favorably well the Colombian Standard NTC 2261. |
---|---|
ISSN: | 1930-2126 1930-2126 |