Downsizing the molecular spring of the giant protein titin reveals that skeletal muscle titin determines passive stiffness and drives longitudinal hypertrophy
Titin, the largest protein known, forms an elastic myofilament in the striated muscle sarcomere. To establish titin’s contribution to skeletal muscle passive stiffness, relative to that of the extracellular matrix, a mouse model was created in which titin’s molecular spring region was shortened by d...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2018-12-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/40532 |