Fixed Points in Functional Inequalities
<p>Abstract</p> <p>Using fixed point methods, we prove the generalized Hyers-Ulam stability of the following functional inequalities <inline-formula> <graphic file="1029-242X-2008-298050-i1.gif"/></inline-formula> and <inline-formula> <graphic f...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2008-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2008/298050 |
id |
doaj-8eec66aa68254eb4bd9a6c348c66eb2b |
---|---|
record_format |
Article |
spelling |
doaj-8eec66aa68254eb4bd9a6c348c66eb2b2020-11-24T22:01:24ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2008-01-0120081298050Fixed Points in Functional InequalitiesPark Choonkil<p>Abstract</p> <p>Using fixed point methods, we prove the generalized Hyers-Ulam stability of the following functional inequalities <inline-formula> <graphic file="1029-242X-2008-298050-i1.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2008-298050-i2.gif"/></inline-formula> in the spirit of Th. M. Rassias stability approach.</p>http://www.journalofinequalitiesandapplications.com/content/2008/298050 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Park Choonkil |
spellingShingle |
Park Choonkil Fixed Points in Functional Inequalities Journal of Inequalities and Applications |
author_facet |
Park Choonkil |
author_sort |
Park Choonkil |
title |
Fixed Points in Functional Inequalities |
title_short |
Fixed Points in Functional Inequalities |
title_full |
Fixed Points in Functional Inequalities |
title_fullStr |
Fixed Points in Functional Inequalities |
title_full_unstemmed |
Fixed Points in Functional Inequalities |
title_sort |
fixed points in functional inequalities |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2008-01-01 |
description |
<p>Abstract</p> <p>Using fixed point methods, we prove the generalized Hyers-Ulam stability of the following functional inequalities <inline-formula> <graphic file="1029-242X-2008-298050-i1.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2008-298050-i2.gif"/></inline-formula> in the spirit of Th. M. Rassias stability approach.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2008/298050 |
work_keys_str_mv |
AT parkchoonkil fixedpointsinfunctionalinequalities |
_version_ |
1725839800099930112 |