Identification of Novel Biomarkers in Pancreatic Tumor Tissue to Predict Response to Neoadjuvant Chemotherapy

Background: Neoadjuvant chemotherapy (NAC) has been of recent interest as an alternative to upfront surgery followed by adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma (PDAC). However, a subset of patients does not respond to NAC and may have been better managed by upfront su...

Full description

Bibliographic Details
Main Authors: Sumit Sahni, Christopher Nahm, Christoph Krisp, Mark P. Molloy, Shreya Mehta, Sarah Maloney, Malinda Itchins, Nick Pavlakis, Stephen Clarke, David Chan, Anthony J. Gill, Viive M. Howell, Jaswinder Samra, Anubhav Mittal
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-03-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fonc.2020.00237/full
Description
Summary:Background: Neoadjuvant chemotherapy (NAC) has been of recent interest as an alternative to upfront surgery followed by adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma (PDAC). However, a subset of patients does not respond to NAC and may have been better managed by upfront surgery. Hence, there is an unmet need for accurate biomarkers for predicting NAC response in PDAC. We aimed to identify upregulated proteins in tumor tissue from poor- and good-NAC responders.Methods: Tumor and adjacent pancreas tissue samples were obtained following surgical resection from NAC-treated PDAC patients. SWATH-MS proteomic analysis was performed to identify and quantify proteins in tissue samples. Statistical analysis was performed to identify biomarkers for NAC response. Pathway analysis was performed to characterize affected canonical pathways in good- and poor-NAC responders.Results: A total of 3,156 proteins were identified, with 19 being were significantly upregulated in poor-responders compared to good-responders (log2 ratio > 2, p < 0.05). Those with the greatest ability to predict poor-NAC response were GRP78, CADM1, PGES2, and RUXF. Notably, canonical pathways that were significantly upregulated in good-responders included acute phase signaling and macrophage activation, indicating a heightened immune response in these patients.Conclusion: A novel biomarker signature for poor-NAC response in PDAC was identified.
ISSN:2234-943X