Summary: | The radial movement of minerals in tree trunks is a widely accepted function of ray parenchyma cells, but there is little experimental evidence for this. We previously obtained experimental data showing that the parenchyma cells were the site of the radial mineral movement in Japanese cedar (<i>Cryptomeria japonica</i> D. Don) trunks in winter. Therefore, the aim of this study was to answer two remaining questions: do parenchyma cells move minerals via active transport or passive diffusion and how do seasonality and the injection duration affect the radial movement of minerals. To analyze this, we compared mineral movement in living standing Japanese cedar trees with heartwood in which the trunk had been left untreated or freeze–thawed with liquid nitrogen to kill the living cells. A solution of a stable isotope of cesium (Cs), as a tracer of mineral movement, was continuously injected into the outer sapwood of these normal and freeze–thaw-treated trees for an objective period, following which the trunk was freeze-fixed with liquid nitrogen. The Cs distribution in frozen samples was then analyzed by cryo-scanning electron microscopy/energy-dispersive X-ray spectroscopy. After 1 and 5 days of injection, the Cs detection area was almost the same among parenchyma cells and tracheid cell walls in the freeze–thaw-treated samples (without living cells) but was further toward the inner xylem in the parenchyma cells than the tracheids in the normal samples (with living cells), indicating that living parenchyma cells move Cs. Furthermore, after 5 days of injection, Cs in the tracheid cell walls was detected further toward the inner xylem in the normal samples than in the freeze–thaw-treated samples, indicating that Cs is exuded from the parenchyma cells into the tracheid cell walls. Together, these results suggest that the radial movement of minerals in standing Japanese cedar trees occurs through a combination of active transport by parenchyma cells and diffusion in the cell walls.
|