The law of iterated logarithm for the estimations of diffusion-type processes

Abstract This paper mainly discusses the asymptotic behaviours on the lasso-type estimators for diffusion-type processes with a small noise. By constructing the objective function on the estimation, in view of convexity argument, it is proved that the estimator for different values of γ satisfies th...

Full description

Bibliographic Details
Main Authors: Mingzhi Mao, Gang Huang
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:Advances in Difference Equations
Subjects:
Online Access:https://doi.org/10.1186/s13662-020-2506-5
id doaj-8ec3914e3d934f6ab933dfb94ca1fa03
record_format Article
spelling doaj-8ec3914e3d934f6ab933dfb94ca1fa032021-01-17T12:52:09ZengSpringerOpenAdvances in Difference Equations1687-18472020-01-012020111510.1186/s13662-020-2506-5The law of iterated logarithm for the estimations of diffusion-type processesMingzhi Mao0Gang Huang1School of Mathematics and Physics, China University of GeosciencesSchool of Mathematics and Physics, China University of GeosciencesAbstract This paper mainly discusses the asymptotic behaviours on the lasso-type estimators for diffusion-type processes with a small noise. By constructing the objective function on the estimation, in view of convexity argument, it is proved that the estimator for different values of γ satisfies the iterated logarithm law. The result also presents the exponential convergence principle for the estimator converging to the true value.https://doi.org/10.1186/s13662-020-2506-5The law of iterated logarithmDiffusion-type processesApproach of argminsObjective function
collection DOAJ
language English
format Article
sources DOAJ
author Mingzhi Mao
Gang Huang
spellingShingle Mingzhi Mao
Gang Huang
The law of iterated logarithm for the estimations of diffusion-type processes
Advances in Difference Equations
The law of iterated logarithm
Diffusion-type processes
Approach of argmins
Objective function
author_facet Mingzhi Mao
Gang Huang
author_sort Mingzhi Mao
title The law of iterated logarithm for the estimations of diffusion-type processes
title_short The law of iterated logarithm for the estimations of diffusion-type processes
title_full The law of iterated logarithm for the estimations of diffusion-type processes
title_fullStr The law of iterated logarithm for the estimations of diffusion-type processes
title_full_unstemmed The law of iterated logarithm for the estimations of diffusion-type processes
title_sort law of iterated logarithm for the estimations of diffusion-type processes
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2020-01-01
description Abstract This paper mainly discusses the asymptotic behaviours on the lasso-type estimators for diffusion-type processes with a small noise. By constructing the objective function on the estimation, in view of convexity argument, it is proved that the estimator for different values of γ satisfies the iterated logarithm law. The result also presents the exponential convergence principle for the estimator converging to the true value.
topic The law of iterated logarithm
Diffusion-type processes
Approach of argmins
Objective function
url https://doi.org/10.1186/s13662-020-2506-5
work_keys_str_mv AT mingzhimao thelawofiteratedlogarithmfortheestimationsofdiffusiontypeprocesses
AT ganghuang thelawofiteratedlogarithmfortheestimationsofdiffusiontypeprocesses
AT mingzhimao lawofiteratedlogarithmfortheestimationsofdiffusiontypeprocesses
AT ganghuang lawofiteratedlogarithmfortheestimationsofdiffusiontypeprocesses
_version_ 1724334285439107072