Neural basis of scientific innovation induced by heuristic prototype.
A number of major inventions in history have been based on bionic imitation. Heuristics, by applying biological systems to the creation of artificial devices and machines, might be one of the most critical processes in scientific innovation. In particular, prototype heuristics propositions that inno...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3555868?pdf=render |
id |
doaj-8ea5493db1b842feaeab77ba39718a31 |
---|---|
record_format |
Article |
spelling |
doaj-8ea5493db1b842feaeab77ba39718a312020-11-24T21:26:05ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0181e4923110.1371/journal.pone.0049231Neural basis of scientific innovation induced by heuristic prototype.Junlong LuoWenfu LiJiang QiuDongtao WeiYijun LiuQinlin ZhangA number of major inventions in history have been based on bionic imitation. Heuristics, by applying biological systems to the creation of artificial devices and machines, might be one of the most critical processes in scientific innovation. In particular, prototype heuristics propositions that innovation may engage automatic activation of a prototype such as a biological system to form novel associations between a prototype's function and problem-solving. We speculated that the cortical dissociation between the automatic activation and forming novel associations in innovation is critical point to heuristic creativity. In the present study, novel and old scientific innovations (NSI and OSI) were selected as experimental materials in using learning-testing paradigm to explore the neural basis of scientific innovation induced by heuristic prototype. College students were required to resolve NSI problems (to which they did not know the answers) and OSI problems (to which they knew the answers). From two fMRI experiments, our results showed that the subjects could resolve NSI when provided with heuristic prototypes. In Experiment 1, it was found that the lingual gyrus (LG; BA18) might be related to prototype heuristics in college students resolving NSI after learning a relative prototype. In Experiment 2, the LG (BA18) and precuneus (BA31) were significantly activated for NSI compared to OSI when college students learned all prototypes one day before the test. In addition, the mean beta-values of these brain regions of NSI were all correlated with the behavior accuracy of NSI. As our hypothesis indicated, the findings suggested that the LG might be involved in forming novel associations using heuristic information, while the precuneus might be involved in the automatic activation of heuristic prototype during scientific innovation.http://europepmc.org/articles/PMC3555868?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Junlong Luo Wenfu Li Jiang Qiu Dongtao Wei Yijun Liu Qinlin Zhang |
spellingShingle |
Junlong Luo Wenfu Li Jiang Qiu Dongtao Wei Yijun Liu Qinlin Zhang Neural basis of scientific innovation induced by heuristic prototype. PLoS ONE |
author_facet |
Junlong Luo Wenfu Li Jiang Qiu Dongtao Wei Yijun Liu Qinlin Zhang |
author_sort |
Junlong Luo |
title |
Neural basis of scientific innovation induced by heuristic prototype. |
title_short |
Neural basis of scientific innovation induced by heuristic prototype. |
title_full |
Neural basis of scientific innovation induced by heuristic prototype. |
title_fullStr |
Neural basis of scientific innovation induced by heuristic prototype. |
title_full_unstemmed |
Neural basis of scientific innovation induced by heuristic prototype. |
title_sort |
neural basis of scientific innovation induced by heuristic prototype. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
A number of major inventions in history have been based on bionic imitation. Heuristics, by applying biological systems to the creation of artificial devices and machines, might be one of the most critical processes in scientific innovation. In particular, prototype heuristics propositions that innovation may engage automatic activation of a prototype such as a biological system to form novel associations between a prototype's function and problem-solving. We speculated that the cortical dissociation between the automatic activation and forming novel associations in innovation is critical point to heuristic creativity. In the present study, novel and old scientific innovations (NSI and OSI) were selected as experimental materials in using learning-testing paradigm to explore the neural basis of scientific innovation induced by heuristic prototype. College students were required to resolve NSI problems (to which they did not know the answers) and OSI problems (to which they knew the answers). From two fMRI experiments, our results showed that the subjects could resolve NSI when provided with heuristic prototypes. In Experiment 1, it was found that the lingual gyrus (LG; BA18) might be related to prototype heuristics in college students resolving NSI after learning a relative prototype. In Experiment 2, the LG (BA18) and precuneus (BA31) were significantly activated for NSI compared to OSI when college students learned all prototypes one day before the test. In addition, the mean beta-values of these brain regions of NSI were all correlated with the behavior accuracy of NSI. As our hypothesis indicated, the findings suggested that the LG might be involved in forming novel associations using heuristic information, while the precuneus might be involved in the automatic activation of heuristic prototype during scientific innovation. |
url |
http://europepmc.org/articles/PMC3555868?pdf=render |
work_keys_str_mv |
AT junlongluo neuralbasisofscientificinnovationinducedbyheuristicprototype AT wenfuli neuralbasisofscientificinnovationinducedbyheuristicprototype AT jiangqiu neuralbasisofscientificinnovationinducedbyheuristicprototype AT dongtaowei neuralbasisofscientificinnovationinducedbyheuristicprototype AT yijunliu neuralbasisofscientificinnovationinducedbyheuristicprototype AT qinlinzhang neuralbasisofscientificinnovationinducedbyheuristicprototype |
_version_ |
1725981122704179200 |