Material Identification Using a Microwave Sensor Array and Machine Learning

In this paper, a novel methodology is proposed for material identification. It is based on the use of a microwave sensor array with the elements of the array resonating at various frequencies within a wide range and applying machine learning algorithms on the collected data. Unlike the previous micr...

Full description

Bibliographic Details
Main Authors: Luke Harrsion, Maryam Ravan, Dhara Tandel, Kunyi Zhang, Tanvi Patel, Reza K. Amineh
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/2/288
Description
Summary:In this paper, a novel methodology is proposed for material identification. It is based on the use of a microwave sensor array with the elements of the array resonating at various frequencies within a wide range and applying machine learning algorithms on the collected data. Unlike the previous microwave sensing systems which are mainly based on a single resonating sensor, the proposed methodology allows for material characterization over a wide frequency range which, in turn, improves the accuracy of the material identification procedure. The performance of the proposed methodology is tested via the use of easily available materials such as woods, cardboards, and plastics. However, the proposed methodology can be extended to other applications such as industrial liquid identification and composite material identification, among others.
ISSN:2079-9292