Data with hierarchical structure: impact of intraclass correlation and sample size on Type-I error

Least squares analyses (e.g., ANOVAs, linear regressions) of hierarchical data leads to Type-I error rates that depart severely from the nominal Type-I error rate assumed. Thus, when least squares methods are used to analyze hierarchical data coming from designs in which some groups are assigned to...

Full description

Bibliographic Details
Main Authors: Serban C Musca, Rodolphe eKamiejski, Armelle eNugier, Alain eMéot, Abdelatif eEr-rafiy, Markus eBrauer
Format: Article
Language:English
Published: Frontiers Media S.A. 2011-04-01
Series:Frontiers in Psychology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fpsyg.2011.00074/full
id doaj-8e755459b3504db9bfadeac568b81b5a
record_format Article
spelling doaj-8e755459b3504db9bfadeac568b81b5a2020-11-24T21:03:18ZengFrontiers Media S.A.Frontiers in Psychology1664-10782011-04-01210.3389/fpsyg.2011.000741847Data with hierarchical structure: impact of intraclass correlation and sample size on Type-I errorSerban C Musca0Rodolphe eKamiejski1Armelle eNugier2Alain eMéot3Abdelatif eEr-rafiy4Markus eBrauer5Markus eBrauer6University Rennes 2Clermont Université, Université Blaise PascalClermont Université, Université Blaise PascalClermont Université, Université Blaise PascalClermont Université, Université Blaise PascalClermont Université, Université Blaise PascalCNRSLeast squares analyses (e.g., ANOVAs, linear regressions) of hierarchical data leads to Type-I error rates that depart severely from the nominal Type-I error rate assumed. Thus, when least squares methods are used to analyze hierarchical data coming from designs in which some groups are assigned to the treatment condition, and others to the control condition (i.e., the widely used "groups nested under treatment" experimental design), the Type-I error rate is seriously inflated, leading too often to the incorrect rejection of the null hypothesis (i.e., the incorrect conclusion of an effect of the treatment). To highlight the severity of the problem, we present simulations showing how the Type-I error rate is affected under different conditions of intraclass correlation and sample size. For all simulations the Type-I error rate after application of the popular Kish (1965) correction is also considered, and the limitations of this correction technique discussed. We conclude with suggestions on how one should collect and analyze data bearing a hierarchical structure.http://journal.frontiersin.org/Journal/10.3389/fpsyg.2011.00074/fullcorrection for nonindependence of observationsgroups nested under treatmenthierarchical data structuremultilevel modelingType-I error
collection DOAJ
language English
format Article
sources DOAJ
author Serban C Musca
Rodolphe eKamiejski
Armelle eNugier
Alain eMéot
Abdelatif eEr-rafiy
Markus eBrauer
Markus eBrauer
spellingShingle Serban C Musca
Rodolphe eKamiejski
Armelle eNugier
Alain eMéot
Abdelatif eEr-rafiy
Markus eBrauer
Markus eBrauer
Data with hierarchical structure: impact of intraclass correlation and sample size on Type-I error
Frontiers in Psychology
correction for nonindependence of observations
groups nested under treatment
hierarchical data structure
multilevel modeling
Type-I error
author_facet Serban C Musca
Rodolphe eKamiejski
Armelle eNugier
Alain eMéot
Abdelatif eEr-rafiy
Markus eBrauer
Markus eBrauer
author_sort Serban C Musca
title Data with hierarchical structure: impact of intraclass correlation and sample size on Type-I error
title_short Data with hierarchical structure: impact of intraclass correlation and sample size on Type-I error
title_full Data with hierarchical structure: impact of intraclass correlation and sample size on Type-I error
title_fullStr Data with hierarchical structure: impact of intraclass correlation and sample size on Type-I error
title_full_unstemmed Data with hierarchical structure: impact of intraclass correlation and sample size on Type-I error
title_sort data with hierarchical structure: impact of intraclass correlation and sample size on type-i error
publisher Frontiers Media S.A.
series Frontiers in Psychology
issn 1664-1078
publishDate 2011-04-01
description Least squares analyses (e.g., ANOVAs, linear regressions) of hierarchical data leads to Type-I error rates that depart severely from the nominal Type-I error rate assumed. Thus, when least squares methods are used to analyze hierarchical data coming from designs in which some groups are assigned to the treatment condition, and others to the control condition (i.e., the widely used "groups nested under treatment" experimental design), the Type-I error rate is seriously inflated, leading too often to the incorrect rejection of the null hypothesis (i.e., the incorrect conclusion of an effect of the treatment). To highlight the severity of the problem, we present simulations showing how the Type-I error rate is affected under different conditions of intraclass correlation and sample size. For all simulations the Type-I error rate after application of the popular Kish (1965) correction is also considered, and the limitations of this correction technique discussed. We conclude with suggestions on how one should collect and analyze data bearing a hierarchical structure.
topic correction for nonindependence of observations
groups nested under treatment
hierarchical data structure
multilevel modeling
Type-I error
url http://journal.frontiersin.org/Journal/10.3389/fpsyg.2011.00074/full
work_keys_str_mv AT serbancmusca datawithhierarchicalstructureimpactofintraclasscorrelationandsamplesizeontypeierror
AT rodolpheekamiejski datawithhierarchicalstructureimpactofintraclasscorrelationandsamplesizeontypeierror
AT armelleenugier datawithhierarchicalstructureimpactofintraclasscorrelationandsamplesizeontypeierror
AT alainemeot datawithhierarchicalstructureimpactofintraclasscorrelationandsamplesizeontypeierror
AT abdelatifeerrafiy datawithhierarchicalstructureimpactofintraclasscorrelationandsamplesizeontypeierror
AT markusebrauer datawithhierarchicalstructureimpactofintraclasscorrelationandsamplesizeontypeierror
AT markusebrauer datawithhierarchicalstructureimpactofintraclasscorrelationandsamplesizeontypeierror
_version_ 1716773433833947136