Adaptive Obstacle Detection for Mobile Robots in Urban Environments Using Downward-Looking 2D LiDAR

Environment perception is important for collision-free motion planning of outdoor mobile robots. This paper presents an adaptive obstacle detection method for outdoor mobile robots using a single downward-looking LiDAR sensor. The method begins by extracting line segments from the raw sensor data, a...

Full description

Bibliographic Details
Main Authors: Cong Pang, Xunyu Zhong, Huosheng Hu, Jun Tian, Xiafu Peng, Jianping Zeng
Format: Article
Language:English
Published: MDPI AG 2018-05-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/18/6/1749
Description
Summary:Environment perception is important for collision-free motion planning of outdoor mobile robots. This paper presents an adaptive obstacle detection method for outdoor mobile robots using a single downward-looking LiDAR sensor. The method begins by extracting line segments from the raw sensor data, and then estimates the height and the vector of the scanned road surface at each moment. Subsequently, the segments are divided into either road ground or obstacles based on the average height of each line segment and the deviation between the line segment and the road vector estimated from the previous measurements. A series of experiments have been conducted in several scenarios, including normal scenes and complex scenes. The experimental results show that the proposed approach can accurately detect obstacles on roads and could effectively deal with the different heights of obstacles in urban road environments.
ISSN:1424-8220