Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification
Abstract Genetic studies have shown that FGF10/FGFR2 signaling is required for airway branching morphogenesis and FGF10 functions as a chemoattractant factor for distal epithelial cells during lung development. However, the detail downstream cellular and molecular mechanisms have not been fully char...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-09-01
|
Series: | Scientific Reports |
Subjects: | |
Online Access: | https://doi.org/10.1038/s41598-018-32494-z |
id |
doaj-8e5eb763830e4f5c9f0840757052e6fb |
---|---|
record_format |
Article |
spelling |
doaj-8e5eb763830e4f5c9f0840757052e6fb2020-12-08T04:50:45ZengNature Publishing GroupScientific Reports2045-23222018-09-018111210.1038/s41598-018-32494-zAnxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specificationKewu Jiang0Zan Tang1Juan Li2Fengchao Wang3Nan Tang4College of Life Sciences, Beijing Normal UniversityNational Institute of Biological SciencesNational Institute of Biological SciencesNational Institute of Biological SciencesNational Institute of Biological SciencesAbstract Genetic studies have shown that FGF10/FGFR2 signaling is required for airway branching morphogenesis and FGF10 functions as a chemoattractant factor for distal epithelial cells during lung development. However, the detail downstream cellular and molecular mechanisms have not been fully characterized. Using live imaging of ex vivo cultured lungs, we found that tip airway epithelial progenitor cells migrate faster than cleft cells during airway bud formation and this migration process is controlled by FGFR2-mediated ERK1/2 signaling. Additionally, we found that airway progenitor cells that migrate faster tend to become distal airway progenitor cells. We identified that Anxa4 is a downstream target of ERK1/2 signaling. Anxa4 −/− airway epithelial cells exhibit a “lag-behind” behavior and tend to stay at the stalk airways. Moreover, we found that Anxa4-overexpressing cells tend to migrate to the bud tips. Finally, we demonstrated that Anxa4 functions redundantly with Anxa1 and Anxa6 in regulating endoderm budding process. Our study demonstrates that ERK1/2/Anxa4 signaling plays a role in promoting the migration of airway epithelial progenitor cells to distal airway tips and ensuring their distal cell fate.https://doi.org/10.1038/s41598-018-32494-zAirway Progenitor CellsCell CleftsEndodermal BudDistal AirwaysLung Endoderm |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kewu Jiang Zan Tang Juan Li Fengchao Wang Nan Tang |
spellingShingle |
Kewu Jiang Zan Tang Juan Li Fengchao Wang Nan Tang Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification Scientific Reports Airway Progenitor Cells Cell Clefts Endodermal Bud Distal Airways Lung Endoderm |
author_facet |
Kewu Jiang Zan Tang Juan Li Fengchao Wang Nan Tang |
author_sort |
Kewu Jiang |
title |
Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification |
title_short |
Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification |
title_full |
Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification |
title_fullStr |
Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification |
title_full_unstemmed |
Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification |
title_sort |
anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2018-09-01 |
description |
Abstract Genetic studies have shown that FGF10/FGFR2 signaling is required for airway branching morphogenesis and FGF10 functions as a chemoattractant factor for distal epithelial cells during lung development. However, the detail downstream cellular and molecular mechanisms have not been fully characterized. Using live imaging of ex vivo cultured lungs, we found that tip airway epithelial progenitor cells migrate faster than cleft cells during airway bud formation and this migration process is controlled by FGFR2-mediated ERK1/2 signaling. Additionally, we found that airway progenitor cells that migrate faster tend to become distal airway progenitor cells. We identified that Anxa4 is a downstream target of ERK1/2 signaling. Anxa4 −/− airway epithelial cells exhibit a “lag-behind” behavior and tend to stay at the stalk airways. Moreover, we found that Anxa4-overexpressing cells tend to migrate to the bud tips. Finally, we demonstrated that Anxa4 functions redundantly with Anxa1 and Anxa6 in regulating endoderm budding process. Our study demonstrates that ERK1/2/Anxa4 signaling plays a role in promoting the migration of airway epithelial progenitor cells to distal airway tips and ensuring their distal cell fate. |
topic |
Airway Progenitor Cells Cell Clefts Endodermal Bud Distal Airways Lung Endoderm |
url |
https://doi.org/10.1038/s41598-018-32494-z |
work_keys_str_mv |
AT kewujiang anxa4mediatedairwayprogenitorcellmigrationpromotesdistalepithelialcellfatespecification AT zantang anxa4mediatedairwayprogenitorcellmigrationpromotesdistalepithelialcellfatespecification AT juanli anxa4mediatedairwayprogenitorcellmigrationpromotesdistalepithelialcellfatespecification AT fengchaowang anxa4mediatedairwayprogenitorcellmigrationpromotesdistalepithelialcellfatespecification AT nantang anxa4mediatedairwayprogenitorcellmigrationpromotesdistalepithelialcellfatespecification |
_version_ |
1724392036828708864 |