Physical ageing of spreading droplets in a viscous ambient phase

Abstract In this work, we study the spontaneous spreading of water droplets immersed in oil and report an unexpectedly slow kinetic regime not described by previous spreading models. We can quantitatively describe the observed regime crossover and spreading rate in the late kinetic regime with an an...

Full description

Bibliographic Details
Main Authors: Bibin M. Jose, Dhiraj Nandyala, Thomas Cubaud, Carlos E. Colosqui
Format: Article
Language:English
Published: Nature Publishing Group 2018-09-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-018-32392-4
Description
Summary:Abstract In this work, we study the spontaneous spreading of water droplets immersed in oil and report an unexpectedly slow kinetic regime not described by previous spreading models. We can quantitatively describe the observed regime crossover and spreading rate in the late kinetic regime with an analytical model considering the presence of periodic metastable states induced by nanoscale topographic features (characteristic area ~4 nm2, height ~1 nm) observed via atomic force microscopy. The analytical model proposed in this work reveals that certain combinations of droplet volume and nanoscale topographic parameters can significantly hinder or promote wetting processes such as spreading, wicking, and imbibition.
ISSN:2045-2322