Engineering the magnetic coupling and anisotropy at the molecule–magnetic surface interface in molecular spintronic devices

Controlling the magnetic response of a molecular device is important for spintronic applications. Here the authors report the self-assembly, magnetic coupling, and anisotropy of two transition metal complexes bound to a ferrimagnetic surface, and probe the role of the nature of the transition metal...

Full description

Bibliographic Details
Main Authors: Victoria E. Campbell, Monica Tonelli, Irene Cimatti, Jean-Baptiste Moussy, Ludovic Tortech, Yannick J. Dappe, Eric Rivière, Régis Guillot, Sophie Delprat, Richard Mattana, Pierre Seneor, Philippe Ohresser, Fadi Choueikani, Edwige Otero, Florian Koprowiak, Vijay Gopal Chilkuri, Nicolas Suaud, Nathalie Guihéry, Anouk Galtayries, Frederic Miserque, Marie-Anne Arrio, Philippe Sainctavit, Talal Mallah
Format: Article
Language:English
Published: Nature Publishing Group 2016-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/ncomms13646
Description
Summary:Controlling the magnetic response of a molecular device is important for spintronic applications. Here the authors report the self-assembly, magnetic coupling, and anisotropy of two transition metal complexes bound to a ferrimagnetic surface, and probe the role of the nature of the transition metal ion.
ISSN:2041-1723