Summary: | The development of sustainable building materials with reduced environmental footprint in both, manufacturing and operational phases of the material lifecycle, is attracting increased interest in the construction industry worldwide. A recent innovation, the geopolymer foam concrete, combines the performance benefits and operational energy savings achievable through the use of lightweight foam concrete, with the cradle-togate emissions reductions obtained through the use of a geopolymer binder derived from granulated blast-furnace slag (GBFS). In this study mechanical properties of GBFS-based foam concrete were investigated for samples of different water to solid ratio (0.252, 0.287 and 0.321). According to ASTM C 796-97 both mass of the foaming solution and water in sodium silicate solution was considered as part of the total amount of mixing water. As a solid part, GBFS and solid part of activators (NaOH and sodium silicate) was accounted. A group of specimens (40x40x160 beams and 100x100x100 cubes) have been prepared and volume density, bending, compressive strength tests have been performed. In a result an optimized lightweight GBFS-based geopolymer foam concrete was obtained, characterized by 1.8 kg/dm3 volume density, 2.6 MPa bending strength and 51.8 MPa compressive strength measured on beams and 44.1 MPa compressive strength on cubes.
|