Thermal Face Generation Using StyleGAN
This article proposes the use of generative adversarial networks (GANs) via StyleGAN2 to create high-quality synthetic thermal images and obtain training data to build thermal face recognition models using deep learning. We employed different variants of StyleGAN2, incorporating the new improved ver...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9445031/ |
id |
doaj-8e00ebcc606e430db61e1c925dd4815c |
---|---|
record_format |
Article |
spelling |
doaj-8e00ebcc606e430db61e1c925dd4815c2021-06-07T23:00:18ZengIEEEIEEE Access2169-35362021-01-019805118052310.1109/ACCESS.2021.30854239445031Thermal Face Generation Using StyleGANGabriel Hermosilla0https://orcid.org/0000-0002-0674-2254Diego-Ignacio Henriquez Tapia1Hector Allende-Cid2https://orcid.org/0000-0003-3047-8817Gonzalo Farias Castro3https://orcid.org/0000-0003-2186-4126Esteban Vera4https://orcid.org/0000-0001-8387-8131Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileEscuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileEscuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileEscuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileThis article proposes the use of generative adversarial networks (GANs) via StyleGAN2 to create high-quality synthetic thermal images and obtain training data to build thermal face recognition models using deep learning. We employed different variants of StyleGAN2, incorporating the new improved version of StyleGAN that uses adaptive discriminator augmentation (ADA). In addition, three different thermal databases from the literature were employed to train a thermal face detector based on YOLOv3 and to train StyleGAN2 and its variants, evaluating different metrics. The synthetic thermal database was built using GANSpace to manipulate the intermediate latent space w of StyleGAN2 and obtain images with different characteristics, such as eyeglasses, rotation, beards, etc. We carried out the training of 6 pretrained deep learning models for face recognition to validate the use of our synthetic thermal database, obtaining 99.98% accuracy for classifying synthetic thermal face images.https://ieeexplore.ieee.org/document/9445031/Generative adversarial networksStyleGAN2thermal face recognitiondeep learning |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gabriel Hermosilla Diego-Ignacio Henriquez Tapia Hector Allende-Cid Gonzalo Farias Castro Esteban Vera |
spellingShingle |
Gabriel Hermosilla Diego-Ignacio Henriquez Tapia Hector Allende-Cid Gonzalo Farias Castro Esteban Vera Thermal Face Generation Using StyleGAN IEEE Access Generative adversarial networks StyleGAN2 thermal face recognition deep learning |
author_facet |
Gabriel Hermosilla Diego-Ignacio Henriquez Tapia Hector Allende-Cid Gonzalo Farias Castro Esteban Vera |
author_sort |
Gabriel Hermosilla |
title |
Thermal Face Generation Using StyleGAN |
title_short |
Thermal Face Generation Using StyleGAN |
title_full |
Thermal Face Generation Using StyleGAN |
title_fullStr |
Thermal Face Generation Using StyleGAN |
title_full_unstemmed |
Thermal Face Generation Using StyleGAN |
title_sort |
thermal face generation using stylegan |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2021-01-01 |
description |
This article proposes the use of generative adversarial networks (GANs) via StyleGAN2 to create high-quality synthetic thermal images and obtain training data to build thermal face recognition models using deep learning. We employed different variants of StyleGAN2, incorporating the new improved version of StyleGAN that uses adaptive discriminator augmentation (ADA). In addition, three different thermal databases from the literature were employed to train a thermal face detector based on YOLOv3 and to train StyleGAN2 and its variants, evaluating different metrics. The synthetic thermal database was built using GANSpace to manipulate the intermediate latent space w of StyleGAN2 and obtain images with different characteristics, such as eyeglasses, rotation, beards, etc. We carried out the training of 6 pretrained deep learning models for face recognition to validate the use of our synthetic thermal database, obtaining 99.98% accuracy for classifying synthetic thermal face images. |
topic |
Generative adversarial networks StyleGAN2 thermal face recognition deep learning |
url |
https://ieeexplore.ieee.org/document/9445031/ |
work_keys_str_mv |
AT gabrielhermosilla thermalfacegenerationusingstylegan AT diegoignaciohenriqueztapia thermalfacegenerationusingstylegan AT hectorallendecid thermalfacegenerationusingstylegan AT gonzalofariascastro thermalfacegenerationusingstylegan AT estebanvera thermalfacegenerationusingstylegan |
_version_ |
1721391150019903488 |