Thermal Face Generation Using StyleGAN

This article proposes the use of generative adversarial networks (GANs) via StyleGAN2 to create high-quality synthetic thermal images and obtain training data to build thermal face recognition models using deep learning. We employed different variants of StyleGAN2, incorporating the new improved ver...

Full description

Bibliographic Details
Main Authors: Gabriel Hermosilla, Diego-Ignacio Henriquez Tapia, Hector Allende-Cid, Gonzalo Farias Castro, Esteban Vera
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9445031/
id doaj-8e00ebcc606e430db61e1c925dd4815c
record_format Article
spelling doaj-8e00ebcc606e430db61e1c925dd4815c2021-06-07T23:00:18ZengIEEEIEEE Access2169-35362021-01-019805118052310.1109/ACCESS.2021.30854239445031Thermal Face Generation Using StyleGANGabriel Hermosilla0https://orcid.org/0000-0002-0674-2254Diego-Ignacio Henriquez Tapia1Hector Allende-Cid2https://orcid.org/0000-0003-3047-8817Gonzalo Farias Castro3https://orcid.org/0000-0003-2186-4126Esteban Vera4https://orcid.org/0000-0001-8387-8131Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileEscuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileEscuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileEscuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileEscuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso, ChileThis article proposes the use of generative adversarial networks (GANs) via StyleGAN2 to create high-quality synthetic thermal images and obtain training data to build thermal face recognition models using deep learning. We employed different variants of StyleGAN2, incorporating the new improved version of StyleGAN that uses adaptive discriminator augmentation (ADA). In addition, three different thermal databases from the literature were employed to train a thermal face detector based on YOLOv3 and to train StyleGAN2 and its variants, evaluating different metrics. The synthetic thermal database was built using GANSpace to manipulate the intermediate latent space w of StyleGAN2 and obtain images with different characteristics, such as eyeglasses, rotation, beards, etc. We carried out the training of 6 pretrained deep learning models for face recognition to validate the use of our synthetic thermal database, obtaining 99.98% accuracy for classifying synthetic thermal face images.https://ieeexplore.ieee.org/document/9445031/Generative adversarial networksStyleGAN2thermal face recognitiondeep learning
collection DOAJ
language English
format Article
sources DOAJ
author Gabriel Hermosilla
Diego-Ignacio Henriquez Tapia
Hector Allende-Cid
Gonzalo Farias Castro
Esteban Vera
spellingShingle Gabriel Hermosilla
Diego-Ignacio Henriquez Tapia
Hector Allende-Cid
Gonzalo Farias Castro
Esteban Vera
Thermal Face Generation Using StyleGAN
IEEE Access
Generative adversarial networks
StyleGAN2
thermal face recognition
deep learning
author_facet Gabriel Hermosilla
Diego-Ignacio Henriquez Tapia
Hector Allende-Cid
Gonzalo Farias Castro
Esteban Vera
author_sort Gabriel Hermosilla
title Thermal Face Generation Using StyleGAN
title_short Thermal Face Generation Using StyleGAN
title_full Thermal Face Generation Using StyleGAN
title_fullStr Thermal Face Generation Using StyleGAN
title_full_unstemmed Thermal Face Generation Using StyleGAN
title_sort thermal face generation using stylegan
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2021-01-01
description This article proposes the use of generative adversarial networks (GANs) via StyleGAN2 to create high-quality synthetic thermal images and obtain training data to build thermal face recognition models using deep learning. We employed different variants of StyleGAN2, incorporating the new improved version of StyleGAN that uses adaptive discriminator augmentation (ADA). In addition, three different thermal databases from the literature were employed to train a thermal face detector based on YOLOv3 and to train StyleGAN2 and its variants, evaluating different metrics. The synthetic thermal database was built using GANSpace to manipulate the intermediate latent space w of StyleGAN2 and obtain images with different characteristics, such as eyeglasses, rotation, beards, etc. We carried out the training of 6 pretrained deep learning models for face recognition to validate the use of our synthetic thermal database, obtaining 99.98% accuracy for classifying synthetic thermal face images.
topic Generative adversarial networks
StyleGAN2
thermal face recognition
deep learning
url https://ieeexplore.ieee.org/document/9445031/
work_keys_str_mv AT gabrielhermosilla thermalfacegenerationusingstylegan
AT diegoignaciohenriqueztapia thermalfacegenerationusingstylegan
AT hectorallendecid thermalfacegenerationusingstylegan
AT gonzalofariascastro thermalfacegenerationusingstylegan
AT estebanvera thermalfacegenerationusingstylegan
_version_ 1721391150019903488