Negative Propagation Effects in Two-Dimensional Silicon Photonic Crystals
We demonstrated negative refraction effects of light propagating in two-dimensional square and hexagonal-lattice silicon photonic crystals (PhCs). The plane wave expansion method was used to solve the complex eigenvalue problems, as well as to find dispersion curves and equal-frequency contour (EFC)...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2012/702637 |
Summary: | We demonstrated negative refraction effects of light propagating in two-dimensional square and hexagonal-lattice silicon photonic crystals (PhCs). The plane wave expansion method was used to solve the complex eigenvalue problems, as well as to find dispersion curves and equal-frequency contour (EFC). The finite-difference time-domain (FDTD) method was used to simulate and visualize electromagnetic wave propagation and scattering in the PhCs. Theoretical analyses and numerical simulations are presented. Two different kinds of negative refractions, namely, all-angle negative refraction (AANR) without a negative index and negative refraction with effective negative index, have been verified and compared. |
---|---|
ISSN: | 1110-662X 1687-529X |