Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes

<p>Canopy structural and leaf photosynthesis parameterizations such as maximum carboxylation capacity (<span class="inline-formula"><i>V</i><sub>cmax</sub></span>), slope of the Ball–Berry stomatal conductance model (BB<span class="inline-f...

Full description

Bibliographic Details
Main Authors: D. Dutta, D. S. Schimel, Y. Sun, C. van der Tol, C. Frankenberg
Format: Article
Language:English
Published: Copernicus Publications 2019-01-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/16/77/2019/bg-16-77-2019.pdf
id doaj-8dc1799e239a42ce9f25a3f45c6d00f8
record_format Article
spelling doaj-8dc1799e239a42ce9f25a3f45c6d00f82020-11-25T02:48:14ZengCopernicus PublicationsBiogeosciences1726-41701726-41892019-01-01167710310.5194/bg-16-77-2019Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxesD. Dutta0D. S. Schimel1Y. Sun2C. van der Tol3C. Frankenberg4C. Frankenberg5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USASchool of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USAFaculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the NetherlandsJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USADivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA<p>Canopy structural and leaf photosynthesis parameterizations such as maximum carboxylation capacity (<span class="inline-formula"><i>V</i><sub>cmax</sub></span>), slope of the Ball–Berry stomatal conductance model (BB<span class="inline-formula"><sub>slope</sub></span>) and leaf area index (LAI) are crucial for modeling plant physiological processes and canopy radiative transfer. These parameters are large sources of uncertainty in predictions of carbon and water fluxes. In this study, we develop an optimal moving window nonlinear Bayesian inversion framework to use the Soil Canopy Observation Photochemistry and Energy fluxes (SCOPE) model for constraining <span class="inline-formula"><i>V</i><sub>cmax</sub></span>, BB<span class="inline-formula"><sub>slope</sub></span> and LAI with observations of coupled carbon and energy fluxes and spectral reflectance from satellites. We adapted SCOPE to follow the biochemical implementation of the Community Land Model and applied the inversion framework for parameter retrievals of plant species that have both the C<span class="inline-formula"><sub>3</sub></span> and C<span class="inline-formula"><sub>4</sub></span> photosynthetic pathways across three ecosystems. We present comparative analysis of parameter retrievals using observations of (i) gross primary productivity (GPP) and latent energy (LE) fluxes and (ii) improvement in results when using flux observations along with reflectance. Our results demonstrate the applicability of the approach in terms of capturing the seasonal variability and posterior error reduction (40&thinsp;%–90&thinsp;%) of key ecosystem parameters. The optimized parameters capture the diurnal and seasonal variability in the GPP and LE fluxes well when compared to flux tower observations (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">0.95</mn><mo>&gt;</mo><msup><mi>R</mi><mn mathvariant="normal">2</mn></msup><mo>&gt;</mo><mn mathvariant="normal">0.79</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="83pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="14262529bbc61cc2969bf296e20a9b93"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-77-2019-ie00001.svg" width="83pt" height="13pt" src="bg-16-77-2019-ie00001.png"/></svg:svg></span></span>). This study thus demonstrates the feasibility of parameter inversions using SCOPE, which can be easily adapted to incorporate additional data sources such as spectrally resolved reflectance and fluorescence and thermal emissions.</p>https://www.biogeosciences.net/16/77/2019/bg-16-77-2019.pdf
collection DOAJ
language English
format Article
sources DOAJ
author D. Dutta
D. S. Schimel
Y. Sun
C. van der Tol
C. Frankenberg
C. Frankenberg
spellingShingle D. Dutta
D. S. Schimel
Y. Sun
C. van der Tol
C. Frankenberg
C. Frankenberg
Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
Biogeosciences
author_facet D. Dutta
D. S. Schimel
Y. Sun
C. van der Tol
C. Frankenberg
C. Frankenberg
author_sort D. Dutta
title Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
title_short Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
title_full Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
title_fullStr Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
title_full_unstemmed Optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
title_sort optimal inverse estimation of ecosystem parameters from observations of carbon and energy fluxes
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2019-01-01
description <p>Canopy structural and leaf photosynthesis parameterizations such as maximum carboxylation capacity (<span class="inline-formula"><i>V</i><sub>cmax</sub></span>), slope of the Ball–Berry stomatal conductance model (BB<span class="inline-formula"><sub>slope</sub></span>) and leaf area index (LAI) are crucial for modeling plant physiological processes and canopy radiative transfer. These parameters are large sources of uncertainty in predictions of carbon and water fluxes. In this study, we develop an optimal moving window nonlinear Bayesian inversion framework to use the Soil Canopy Observation Photochemistry and Energy fluxes (SCOPE) model for constraining <span class="inline-formula"><i>V</i><sub>cmax</sub></span>, BB<span class="inline-formula"><sub>slope</sub></span> and LAI with observations of coupled carbon and energy fluxes and spectral reflectance from satellites. We adapted SCOPE to follow the biochemical implementation of the Community Land Model and applied the inversion framework for parameter retrievals of plant species that have both the C<span class="inline-formula"><sub>3</sub></span> and C<span class="inline-formula"><sub>4</sub></span> photosynthetic pathways across three ecosystems. We present comparative analysis of parameter retrievals using observations of (i) gross primary productivity (GPP) and latent energy (LE) fluxes and (ii) improvement in results when using flux observations along with reflectance. Our results demonstrate the applicability of the approach in terms of capturing the seasonal variability and posterior error reduction (40&thinsp;%–90&thinsp;%) of key ecosystem parameters. The optimized parameters capture the diurnal and seasonal variability in the GPP and LE fluxes well when compared to flux tower observations (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">0.95</mn><mo>&gt;</mo><msup><mi>R</mi><mn mathvariant="normal">2</mn></msup><mo>&gt;</mo><mn mathvariant="normal">0.79</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="83pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="14262529bbc61cc2969bf296e20a9b93"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-77-2019-ie00001.svg" width="83pt" height="13pt" src="bg-16-77-2019-ie00001.png"/></svg:svg></span></span>). This study thus demonstrates the feasibility of parameter inversions using SCOPE, which can be easily adapted to incorporate additional data sources such as spectrally resolved reflectance and fluorescence and thermal emissions.</p>
url https://www.biogeosciences.net/16/77/2019/bg-16-77-2019.pdf
work_keys_str_mv AT ddutta optimalinverseestimationofecosystemparametersfromobservationsofcarbonandenergyfluxes
AT dsschimel optimalinverseestimationofecosystemparametersfromobservationsofcarbonandenergyfluxes
AT ysun optimalinverseestimationofecosystemparametersfromobservationsofcarbonandenergyfluxes
AT cvandertol optimalinverseestimationofecosystemparametersfromobservationsofcarbonandenergyfluxes
AT cfrankenberg optimalinverseestimationofecosystemparametersfromobservationsofcarbonandenergyfluxes
AT cfrankenberg optimalinverseestimationofecosystemparametersfromobservationsofcarbonandenergyfluxes
_version_ 1724749064015183872