Influence of nanoparticle weight fraction on morphology and thermal properties of HDPE/SiO2 composite films

High-density polyethylene (HDPE) composite films with different amounts of SiO2 nanoparticles ( 1 −20 % vol.) were prepared by melt blending using a high-pressure thermal pressing technique. The morphological characterization, surface topology and distribution of nanoparticles in polymer matrix of n...

Full description

Bibliographic Details
Main Author: 10.29317/ejpfm.2020040105
Format: Article
Language:English
Published: L.N. Gumilyov Eurasian National University 2020-03-01
Series:Eurasian Journal of Physics and Functional Materials
Subjects:
Online Access:http://ephys.kz/index.php?view=article&id=202
Description
Summary:High-density polyethylene (HDPE) composite films with different amounts of SiO2 nanoparticles ( 1 −20 % vol.) were prepared by melt blending using a high-pressure thermal pressing technique. The morphological characterization, surface topology and distribution of nanoparticles in polymer matrix of nanocomposites were investigated by using Scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal characterization of the nanocomposites were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). SEM and AFM results revealed that silica nanoparticles aggregates were distributed mainly homogeneously. The nano-fillers change supramolecular structure and surface morphology of HDPE strongly. DSC results showed addition of nano-SiO2 particles slightly decrease the melting temperature by 3-4 degree but strongly decrease the crystallization temperature by 7-8 degree. And crystallinity degree of the HDPE decrease. The thermal stability of the composite films was measured using Thermo Gravimetric analysis (TGA). Polymer nanocomposite showed higher thermal stability as compared with pure HDPE. Composites with 20% vol. of nano-SiO2 have maximum thermal degradation temperature of 498.4◦ C.
ISSN:2522-9869
2616-8537