Fault Detection for Turbine Engine Disk Based on Adaptive Weighted One-Class Support Vector Machine

Fault detection for turbine engine components is becoming increasingly important for the efficient running of commercial aircraft. Recently, the support vector machine (SVM) with kernel function is the most popular technique for monitoring nonlinear processes, which can better handle the nonlinear r...

Full description

Bibliographic Details
Main Authors: Jiusheng Chen, Xingkai Xu, Xiaoyu Zhang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2020/9898546
Description
Summary:Fault detection for turbine engine components is becoming increasingly important for the efficient running of commercial aircraft. Recently, the support vector machine (SVM) with kernel function is the most popular technique for monitoring nonlinear processes, which can better handle the nonlinear representation of fault detection of turbine engine disk. In this paper, an adaptive weighted one-class SVM-based fault detection method coupled with incremental and decremental strategy is proposed, which can efficiently solve the time series data stream drifting problem. To update the efficient training of the fault detection model, the incremental strategy based on the new incoming data and support vectors is proposed. The weight of the training sample is updated by the variations of the decision boundaries. Meanwhile, to increase the calculating speed of the fault detection model and reduce the redundant data, the decremental strategy based on the k-nearest neighbor (KNN) is adopted. Based on time series data stream, numerical simulations are conducted and the results validated the superiority of the proposed approach in terms of both the detection performance and robustness.
ISSN:2090-0147
2090-0155