Humans Outperform Machines at the Bilingual Shannon Game

We provide an upper bound for the amount of information a human translator adds to an original text, i.e., how many bits of information we need to store a translation, given the original. We do this by creating a Bilingual Shannon Game that elicits character guesses from human subjects, then develop...

Full description

Bibliographic Details
Main Authors: Marjan Ghazvininejad, Kevin Knight
Format: Article
Language:English
Published: MDPI AG 2016-12-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/19/1/15
Description
Summary:We provide an upper bound for the amount of information a human translator adds to an original text, i.e., how many bits of information we need to store a translation, given the original. We do this by creating a Bilingual Shannon Game that elicits character guesses from human subjects, then developing models to estimate the entropy of those guess sequences.
ISSN:1099-4300