Hyers-Ulam Stability of Differential Equation <inline-formula> <graphic file="1029-242X-2010-793197-i1.gif"/></inline-formula>

<p/> <p>We solve the inhomogeneous differential equation of the form <inline-formula> <graphic file="1029-242X-2010-793197-i2.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-793197-i3.gif"/></inline-formul...

Full description

Bibliographic Details
Main Author: Jung Soon-Mo
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2010/793197
id doaj-8d64cfa862474b3f8465071700cfd780
record_format Article
spelling doaj-8d64cfa862474b3f8465071700cfd7802020-11-24T22:02:26ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101793197Hyers-Ulam Stability of Differential Equation <inline-formula> <graphic file="1029-242X-2010-793197-i1.gif"/></inline-formula>Jung Soon-Mo<p/> <p>We solve the inhomogeneous differential equation of the form <inline-formula> <graphic file="1029-242X-2010-793197-i2.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-793197-i3.gif"/></inline-formula> is a nonnegative integer, and apply this result to the proof of a local Hyers-Ulam stability of the differential equation <inline-formula> <graphic file="1029-242X-2010-793197-i4.gif"/></inline-formula> in a special class of analytic functions.</p>http://www.journalofinequalitiesandapplications.com/content/2010/793197
collection DOAJ
language English
format Article
sources DOAJ
author Jung Soon-Mo
spellingShingle Jung Soon-Mo
Hyers-Ulam Stability of Differential Equation <inline-formula> <graphic file="1029-242X-2010-793197-i1.gif"/></inline-formula>
Journal of Inequalities and Applications
author_facet Jung Soon-Mo
author_sort Jung Soon-Mo
title Hyers-Ulam Stability of Differential Equation <inline-formula> <graphic file="1029-242X-2010-793197-i1.gif"/></inline-formula>
title_short Hyers-Ulam Stability of Differential Equation <inline-formula> <graphic file="1029-242X-2010-793197-i1.gif"/></inline-formula>
title_full Hyers-Ulam Stability of Differential Equation <inline-formula> <graphic file="1029-242X-2010-793197-i1.gif"/></inline-formula>
title_fullStr Hyers-Ulam Stability of Differential Equation <inline-formula> <graphic file="1029-242X-2010-793197-i1.gif"/></inline-formula>
title_full_unstemmed Hyers-Ulam Stability of Differential Equation <inline-formula> <graphic file="1029-242X-2010-793197-i1.gif"/></inline-formula>
title_sort hyers-ulam stability of differential equation <inline-formula> <graphic file="1029-242x-2010-793197-i1.gif"/></inline-formula>
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2010-01-01
description <p/> <p>We solve the inhomogeneous differential equation of the form <inline-formula> <graphic file="1029-242X-2010-793197-i2.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-793197-i3.gif"/></inline-formula> is a nonnegative integer, and apply this result to the proof of a local Hyers-Ulam stability of the differential equation <inline-formula> <graphic file="1029-242X-2010-793197-i4.gif"/></inline-formula> in a special class of analytic functions.</p>
url http://www.journalofinequalitiesandapplications.com/content/2010/793197
work_keys_str_mv AT jungsoonmo hyersulamstabilityofdifferentialequationinlineformulagraphicfile1029242x2010793197i1gifinlineformula
_version_ 1725835847290322944